Skip to main content
Log in

Intervertebral disc lesions: visualisation with ultra-high field MRI at 11.7 T

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Tears and fissures in the intervertebral disc are probably influencing spinal stability. Discography investigations with the aim of fissure detection have been criticised and are discouraged. Therefore, alternative imaging methods, such as MRI, must be investigated.

Methods

A custom-made device was used to insert six needles with different diameters (0.3–2.2 mm/30–14 G) into the annulus of six bovine tail discs (Cy2–Cy3). Directly after removal of the needles, the discs were scanned in an 11.7 T MRI (Res.: 0.059 × 0.059 × 0.625 mm3, tscan: 31 min), in a 3 T MRI with a clinical and additionally with two experimental protocols (exp_HR: Res.: 0.3 mm3, tscan: 97 min/exp_LR: Res.: 0.5 mm3, tscan: 13.4 min). The obtained images were analysed for lesion volume and lesion length using a 3D-reconstruction software.

Results

At 11.7 T, all lesions were visible along with the lamellar structure of the annulus. In the clinical 3 T images, no lesions were visible at all. The 3 T experimental protocols revealed 4 (exp_HR) and 2 (exp_LR) of the 6 lesions. The reconstructed lesions did not have an ideal cylindrical shape. The measured volumes of the lesions ranged from 0.7 to 13.9 mm3 (11.7 T), 0.1–11.4 mm3 (exp_HR) and 0.0–12.4 mm3 (exp_LR) and correlated, but were smaller than the corresponding needle size. The lengths of all needle lesions ranged from 2.9 to 12.3 mm (11.7 T), 0.8–9.7 mm (exp_HR) and 0.0–9.7 mm (exp_LR).

Conclusions

Ultra-high field MRI at 11.7 T is a non-invasive tool to directly visualise annular lesions in vitro, while a 3 T MRI, even with experimental protocols and longer scanning times, demonstrates limited ability. In vivo, it is problematic with the clinical systems available today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kettler A, Wilke HJ (2006) Review of existing grading systems for cervical or lumbar disc and facet joint degeneration. Eur Spine J 15(6):705–718. doi:10.1007/s00586-005-0954-y

    Article  PubMed Central  PubMed  Google Scholar 

  2. Wilke HJ, Rohlmann F, Neidlinger-Wilke C, Werner K, Claes L, Kettler A (2006) Validity and interobserver agreement of a new radiographic grading system for intervertebral disc degeneration: part I. Lumbar spine. Eur Spine J 15(6):720–730. doi:10.1007/s00586-005-1029-9

    Article  PubMed Central  PubMed  Google Scholar 

  3. Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976) 31(18):2151–2161. doi:10.1097/01.brs.0000231761.73859.2c

    Article  Google Scholar 

  4. Adams MA, Dolan P, McNally DS (2009) The internal mechanical functioning of intervertebral discs and articular cartilage, and its relevance to matrix biology. Matrix Biol 28(7):384–389. doi:10.1016/j.matbio.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  5. Sharma A, Pilgram T, Wippold FJ 2nd (2009) Association between annular tears and disk degeneration: a longitudinal study. AJNR Am J Neuroradiol 30(3):500–506. doi:10.3174/ajnr.A1411

    Article  CAS  PubMed  Google Scholar 

  6. Ladd ME, Bock M (2013) Problems and chances of high field magnetic resonance imaging. Der Radiol 53(5):401–410. doi:10.1007/s00117-012-2344-x

    Article  CAS  Google Scholar 

  7. Zhao J, Krug R, Xu D, Lu Y, Link TM (2009) MRI of the spine: image quality and normal-neoplastic bone marrow contrast at 3 T versus 1.5 T. AJR Am J Roentgenol 192(4):873–880. doi:10.2214/AJR.08.1750

    Article  PubMed  Google Scholar 

  8. Del Grande F, Chhabra A, Carrino JA (2012) Getting the most out of 3 tesla MRI of the spine the authors review the advantages, technical challenges, and recent advances. J Musculoskel Med 29(2):56

    Google Scholar 

  9. Yu J, Tirlapur U, Fairbank J, Handford P, Roberts S, Winlove CP, Cui Z, Urban J (2007) Microfibrils, elastin fibres and collagen fibres in the human intervertebral disc and bovine tail disc. J Anat 210(4):460–471. doi:10.1111/j.1469-7580.2007.00707.x

    Article  PubMed Central  PubMed  Google Scholar 

  10. Schneiderman G, Flannigan B, Kingston S, Thomas J, Dillin WH, Watkins RG (1987) Magnetic resonance imaging in the diagnosis of disc degeneration: correlation with discography. Spine (Phila Pa 1976) 12(3):276–281

    Article  CAS  Google Scholar 

  11. Butler D, Trafimow JH, Andersson GB, McNeill TW, Huckman MS (1990) Discs degenerate before facets. Spine (Phila Pa 1976) 15(2):111–113

    Article  CAS  Google Scholar 

  12. Tertti M, Paajanen H, Laato M, Aho H, Komu M, Kormano M (1991) Disc degeneration in magnetic resonance imaging. A comparative biochemical, histologic, and radiologic study in cadaver spines. Spine (Phila Pa 1976) 16(6):629–634

    Article  CAS  Google Scholar 

  13. Gunzburg R, Parkinson R, Moore R, Cantraine F, Hutton W, Vernon-Roberts B, Fraser R (1992) A cadaveric study comparing discography, magnetic resonance imaging, histology, and mechanical behavior of the human lumbar disc. Spine (Phila Pa 1976) 17(4):417–426

    Article  CAS  Google Scholar 

  14. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 26(17):1873–1878

    Article  CAS  Google Scholar 

  15. Griffith JF, Wang YX, Antonio GE, Choi KC, Yu A, Ahuja AT, Leung PC (2007) Modified Pfirrmann grading system for lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 32(24):E708–E712. doi:10.1097/BRS.0b013e31815a59a0

    Article  Google Scholar 

  16. Smith LJ, Nerurkar NL, Choi KS, Harfe BD, Elliott DM (2011) Degeneration and regeneration of the intervertebral disc: lessons from development. Dis models mech 4(1):31–41. doi:10.1242/dmm.006403

    Article  Google Scholar 

  17. Cassidy JJ, Hiltner A, Baer E (1989) Hierarchical structure of the intervertebral disc. Connect Tissue Res 23(1):75–88

    Article  CAS  PubMed  Google Scholar 

  18. Ghosh P (1988) The biology of the intervertebral disc. CRC Press, Boca Raton

    Google Scholar 

  19. Marchand F, Ahmed AM (1990) Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine (Phila Pa 1976) 15(5):402–410

    Article  CAS  Google Scholar 

  20. Bogduk N (1991) The lumbar disc and low back pain. Neurosurg Clin N Am 2(4):791–806

    CAS  PubMed  Google Scholar 

  21. Hsu EW, Setton LA (1999) Diffusion tensor microscopy of the intervertebral disc anulus fibrosus. Magn Reson Med 41(5):992–999

    Article  CAS  PubMed  Google Scholar 

  22. Holzapfel GA, Schulze-Bauer CA, Feigl G, Regitnig P (2005) Single lamellar mechanics of the human lumbar anulus fibrosus. Biomech Model Mechanobiol 3(3):125–140. doi:10.1007/s10237-004-0053-8

    Article  CAS  PubMed  Google Scholar 

  23. Bruehlmann SB, Rattner JB, Matyas JR, Duncan NA (2002) Regional variations in the cellular matrix of the annulus fibrosus of the intervertebral disc. J Anat 201(2):159–171

    Article  PubMed Central  PubMed  Google Scholar 

  24. Pezowicz CA, Robertson PA, Broom ND (2005) Intralamellar relationships within the collagenous architecture of the annulus fibrosus imaged in its fully hydrated state. J Anat 207(4):299–312. doi:10.1111/j.1469-7580.2005.00467.x

    Article  PubMed Central  PubMed  Google Scholar 

  25. Pezowicz CA, Robertson PA, Broom ND (2006) The structural basis of interlamellar cohesion in the intervertebral disc wall. J Anat 208(3):317–330. doi:10.1111/j.1469-7580.2006.00536.x

    Article  PubMed Central  PubMed  Google Scholar 

  26. Schollum ML, Robertson PA, Broom ND (2009) A microstructural investigation of intervertebral disc lamellar connectivity: detailed analysis of the translamellar bridges. J Anat 214(6):805–816. doi:10.1111/j.1469-7580.2009.01076.x

    Article  PubMed Central  PubMed  Google Scholar 

  27. Kettler A, Rohlmann F, Ring C, Mack C, Wilke HJ (2011) Do early stages of lumbar intervertebral disc degeneration really cause instability? Evaluation of an in vitro database. Eur Spine J 20(4):578–584. doi:10.1007/s00586-010-1635-z

    Article  PubMed Central  PubMed  Google Scholar 

  28. Kirkaldy-Willis WH, Farfan HF (1982) Instability of the lumbar spine. Clin Orthop Relat Res 165:110–123

    PubMed  Google Scholar 

  29. Fujiwara A, Lim TH, An HS, Tanaka N, Jeon CH, Andersson GB, Haughton VM (2000) The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine. Spine (Phila Pa 1976) 25(23):3036–3044

    Article  CAS  Google Scholar 

  30. Tanaka N, An HS, Lim TH, Fujiwara A, Jeon CH, Haughton VM (2001) The relationship between disc degeneration and flexibility of the lumbar spine. Spine J Off J North Am Spine Soc 1(1):47–56

    Article  CAS  Google Scholar 

  31. Mimura M, Panjabi MM, Oxland TR, Crisco JJ, Yamamoto I, Vasavada A (1994) Disc degeneration affects the multidirectional flexibility of the lumbar spine. Spine (Phila Pa 1976) 19(12):1371–1380

    Article  CAS  Google Scholar 

  32. Oxland TR, Lund T, Jost B, Cripton P, Lippuner K, Jaeger P, Nolte LP (1996) The relative importance of vertebral bone density and disc degeneration in spinal flexibility and interbody implant performance. An in vitro study. Spine (Phila Pa 1976) 21(22):2558–2569

    Article  CAS  Google Scholar 

  33. Krismer M, Haid C, Behensky H, Kapfinger P, Landauer F, Rachbauer F (2000) Motion in lumbar functional spine units during side bending and axial rotation moments depending on the degree of degeneration. Spine (Phila Pa 1976) 25(16):2020–2027

    Article  CAS  Google Scholar 

  34. Haughton VM, Lim TH, An H (1999) Intervertebral disk appearance correlated with stiffness of lumbar spinal motion segments. AJNR Am J Neuroradiol 20(6):1161–1165

    CAS  PubMed  Google Scholar 

  35. Pinker K, Bogner W, Baltzer P, Trattnig S, Gruber S, Abeyakoon O, Bernathova M, Zaric O, Dubsky P, Bago-Horvath Z, Weber M, Leithner D, Helbich TH (2014) Clinical application of bilateral high temporal and spatial resolution dynamic contrast-enhanced magnetic resonance imaging of the breast at 7 T. Eur Radiol 24(4):913–920. doi:10.1007/s00330-013-3075-8

    Article  CAS  PubMed  Google Scholar 

  36. Trattnig S, Bogner W, Gruber S, Szomolanyi P, Juras V, Robinson S, Zbyn S, Haneder S (2015) Clinical applications at ultrahigh field (7 T). Where does it make the difference? NMR. doi:10.1002/nbm.3272

    Google Scholar 

  37. Yoder JY, Moon SM, Wright AC, Vresilovic EJ, Elliott DM (2011) High resolution 3D MRI to quantify human disc tear geometry and location: P37. Spine J Meet Abstr

  38. Schenck JF (2005) Physical interactions of static magnetic fields with living tissues. Prog Biophys Mol Biol 87(2–3):185–204. doi:10.1016/j.pbiomolbio.2004.08.009

    Article  PubMed  Google Scholar 

  39. Vedrine P, Aubert G, Belorgey J, Berriaud C, Bourquard A, Bredy P, Donati A, Dubois O, Elefant F, Gilgrass G, Juster FP, Lannou H, Molinie F, Nusbaum M, Nunio F, Payn A, Quettier L, Schild T, Scola L, Sinanna A (2014) Manufacturing of the Iseult/INUMAC whole body 11.7 T MRI magnet. IEEE Trans Appl Supercon. doi:10.1109/Tasc.2013.2286256 Artn 4401206

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge funding from the German Research Foundation (DFG) Project WI 1352/14-1. We would like to thank Rene Jonas for his effort in creating CAD drawings for the custom-designed apparatus, Anne Subgang for her assistance in scanning the discs, as well as Sandra Reitmaier and Nicholaus Meyers for carefully reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Wilke.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berger-Roscher, N., Galbusera, F., Rasche, V. et al. Intervertebral disc lesions: visualisation with ultra-high field MRI at 11.7 T. Eur Spine J 24, 2488–2495 (2015). https://doi.org/10.1007/s00586-015-4146-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-015-4146-0

Keywords

Navigation