Skip to main content
Log in

Same-species phenotypic comparison of notochordal and mature nucleus pulposus cells

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

The ratio of notochordal (NC) cells to mature nucleus pulposus (MNP) cells in the nucleus pulposus varies with species, age and health. Studies suggest that loss of NC cells is a key component of intervertebral disc degeneration. However, few studies have examined the phenotypes of these two cell populations. Therefore, this study aimed to isolate NC and MNP cells from the same intervertebral disc and study phenotypic differences in extracellular matrix production and cell morphology in 3D culture over 7 days.

Methods

Sequential mechanical dissociation and enzymatic digestion were used to isolate NC cell clusters and single MNP cells from bovine caudal discs. Cells were cultured in alginate beads and subsequently analysed for viability, cytokeratin-8 expression, GAG production and extracellular matrix gene expression.

Results

Mechanical dissociation allowed NC cells to be extracted as intact cell clusters. NC cells represented 8 % of the NP cell population and expressed both cytokeratin-8 and vimentin. MNP cells expressed vimentin, only. Both cells types were viable for 7 days. In addition to morphological differences, NC cells produced up to 30 times more total proteoglycan than MNP cells. NC cells had significantly higher aggrecan and brachyury expression.

Conclusions

NC and MNP cells can be isolated from the same bovine disc and maintain their distinct phenotypes in 3D culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aguiar DJ, Johnson SL, Oegema TR (1999) Notochordal cells interact with nucleus pulposus cells: regulation of proteoglycan synthesis. Exp Cell Res 246:129–137

    Article  CAS  PubMed  Google Scholar 

  2. Cappello R, Bird JL, Pfeiffer D, Bayliss MT, Dudhia J (2006) Notochordal cell produce and assemble extracellular matrix in a distinct manner, which may be responsible for the maintenance of healthy nucleus pulposus. Spine (Phila Pa 1976) 31:873–882 discussion 883

    Article  Google Scholar 

  3. Chen J, Yan W, Setton LA (2006) Molecular phenotypes of notochordal cells purified from immature nucleus pulposus. Eur Spine J 15(Suppl 3):S303–S311

    Article  PubMed  Google Scholar 

  4. Chou AI, Reza AT, Nicoll SB (2008) Distinct intervertebral disc cell populations adopt similar phenotypes in three-dimensional culture. Tissue Eng Part A 14:2079–2087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Farndale RW, Sayers CA, Barrett AJ (1982) A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect Tissue Res 9:247–248

    Article  CAS  PubMed  Google Scholar 

  6. Gantenbein-Ritter B, Chan SC (2011) The evolutionary importance of cell ratio between notochordal and nucleus pulposus cells: an experimental 3-D co-culture study. Eur Spine J 21:S819–S825

    Article  PubMed  Google Scholar 

  7. Gilson A, Dreger M, Urban JP (2010) Differential expression level of cytokeratin 8 in cells of the bovine nucleus pulposus complicates the search for specific intervertebral disc cell markers. Arthritis Res Ther 12:R24

    Article  PubMed Central  PubMed  Google Scholar 

  8. Gruber HE, Hanley Jr EN (2002) Ultrastructure of the human intervertebral disc during aging and degeneration: comparison of surgical and control specimens. Spine (Phila Pa 1976) 27:798–805

    Article  Google Scholar 

  9. Guehring T, Wilde G, Sumner M, Grunhagen T, Karney GB, Tirlapur UK, Urban JP (2009) Notochordal intervertebral disc cells: sensitivity to nutrient deprivation. Arthritis Rheum 60:1026–1034

    Article  PubMed  Google Scholar 

  10. Hunter CJ, Matyas JR, Duncan NA (2003) The three-dimensional architecture of the notochordal nucleus pulposus: novel observations on cell structures in the canine intervertebral disc. J Anat 202:279–291

    Article  PubMed Central  PubMed  Google Scholar 

  11. Hunter CJ, Matyas JR, Duncan NA (2004) Cytomorphology of notochordal and chondrocytic cells from the nucleus pulposus: a species comparison. J Anat 205:357–362

    Article  PubMed Central  PubMed  Google Scholar 

  12. Hunter CJ, Matyas JR, Duncan NA (2004) The functional significance of cell clusters in the notochordal nucleus pulposus: survival and signaling in the canine intervertebral disc. Spine (Phila Pa 1976) 29:1099–1104

    Article  Google Scholar 

  13. Kim JH, Deasy BM, Seo HY, Studer RK, Vo NV, Georgescu HI, Sowa GA, Kang JD (2009) Differentiation of intervertebral notochordal cells through live automated cell imaging system in vitro. Spine (Phila Pa 1976) 34:2486–2493

    Article  Google Scholar 

  14. Kim KW, Lim TH, Kim JG, Jeong ST, Masuda K, An HS (2003) The origin of chondrocytes in the nucleus pulposus and histologic findings associated with the transition of a notochordal nucleus pulposus to a fibrocartilaginous nucleus pulposus in intact rabbit intervertebral discs. Spine (Phila Pa 1976) 28:982–990

    Google Scholar 

  15. Kim YJ, Sah RL, Doong JY, Grodzinsky AJ (1988) Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem 174:168–176

    Article  CAS  PubMed  Google Scholar 

  16. Leggate J, Allain R, Isaac L, Blais BW (2006) Microplate fluorescence assay for the quantification of double stranded DNA using SYBR Green I dye. Biotechnol Lett 28:1587–1594

    Article  CAS  PubMed  Google Scholar 

  17. McCann MR, Tamplin OJ, Rossant J, Seguin CA (2012) Tracing notochord-derived cells using a Noto-cre mouse: implications for intervertebral disc development. Dis Model Mech 5:73–82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Minogue BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA (2010) Transcriptional profiling of bovine intervertebral disc cells: implications for identification of normal and degenerate human intervertebral disc cell phenotypes. Arthritis Res Ther 12:R22

    Article  PubMed Central  PubMed  Google Scholar 

  19. Miyazaki T, Kobayashi S, Takeno K, Meir A, Urban J, Baba H (2009) A phenotypic comparison of proteoglycan production of intervertebral disc cells isolated from rats, rabbits, and bovine tails; which animal model is most suitable to study tissue engineering and biological repair of human disc disorders? Tissue Eng Part A 15:3835–3846

    Article  CAS  PubMed  Google Scholar 

  20. Myers MA (1998) Direct measurement of cell numbers in microtitre plate cultures using the fluorescent dye SYBR green I. J Immunol Methods 212:99–103

    Article  CAS  PubMed  Google Scholar 

  21. Peacock A (1951) Observations on the prenatal development of the intervertebral disc in man. J Anat 85:260–274

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Peacock A (1952) Observations on the postnatal structure of the intervertebral disc in man. J Anat 86:162–179

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Potier E, Ito K (2014) Using notochordal cells of developmental origin to stimulate nucleus pulposus cells and bone marrow stromal cells for intervertebral disc regeneration. Eur Spine J 23:679–688

    Article  PubMed Central  PubMed  Google Scholar 

  24. Rastogi A, Thakore P, Leung A, Benavides M, Machado M, Morschauser MA, Hsieh AH (2009) Environmental regulation of notochordal gene expression in nucleus pulposus cells. J Cell Physiol 220:698–705

    Article  CAS  PubMed  Google Scholar 

  25. Roberts S, Evans H, Trivedi J, Menage J (2006) Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am 88(Suppl 2):10–14

    Article  PubMed  Google Scholar 

  26. Rodrigues-Pinto R, Richardson SM, Hoyland JA (2014) An understanding of intervertebral disc development, maturation and cell phenotype provides clues to direct cell-based tissue regeneration therapies for disc degeneration. Eur Spine J 23:1803–1814

    Article  PubMed  Google Scholar 

  27. Spillekom S, Smolders LA, Grinwis GC, Arkesteijn IT, Ito K, Meij BP, Tryfonidou MA (2014) Increased osmolarity and cell clustering preserve canine notochordal cell phenotype in culture. Tissue Eng Part C Methods 20:652–662

    Article  CAS  PubMed  Google Scholar 

  28. Stosiek P, Kasper M, Karsten U (1988) Expression of cytokeratin and vimentin in nucleus pulposus cells. Differentiation 39:78–81

    Article  CAS  PubMed  Google Scholar 

  29. Sun Z, Wang HQ, Liu ZH, Chang L, Chen YF, Zhang YZ, Zhang WL, Gao Y, Wan ZY, Che L, Liu X, Samartzis D, Luo ZJ (2013) Down-regulated CK8 expression in human intervertebral disc degeneration. Int J Med Sci 10:948–956

    Article  PubMed Central  PubMed  Google Scholar 

  30. Weiler C, Nerlich AG, Schaaf R, Bachmeier BE, Wuertz K, Boos N (2010) Immunohistochemical identification of notochordal markers in cells in the aging human lumbar intervertebral disc. Eur Spine J 19:1761–1770

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by an Auckland Medical Research Foundation Doctoral Scholarship (TS) and the School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland. Thanks to Satya Amirapu for histological processing, the Biomedical Imaging Research Unit, University of Auckland for use of their facilities and Dr. Kelly Wade for critical review of the manuscript.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan R. McGlashan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saggese, T., Redey, P. & McGlashan, S.R. Same-species phenotypic comparison of notochordal and mature nucleus pulposus cells. Eur Spine J 24, 1976–1985 (2015). https://doi.org/10.1007/s00586-014-3697-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-014-3697-9

Keywords

Navigation