Skip to main content
Log in

The inhibitory effect of salmon calcitonin on intervertebral disc degeneration in an ovariectomized rat model

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Intervertebral disc degeneration related to postmenopausal osteoporosis is an important issue in spinal disorder research. This study aimed to investigate the effects of salmon calcitonin (sCT), as an antiresorptive medication, on lumbar intervertebral disc degeneration using a rat ovariectomy (OVX) model.

Methods

Thirty 3-month-old female Sprague–Dawley rats were randomly divided into three groups: the sham-operated (Sham) group and two ovariectomized groups treated with vehicle (OVX+V) or sCT (OVX+CT; 16 IU/kg, sc) on alternate days for 6 months. Treatment began after OVX and continued for 6 months. At the end of the experiment, bone mineral density (BMD), micro-CT analysis, biomechanical testing, histology, and immunohistochemistry were performed for all groups.

Results

Salmon calcitonin significantly maintained vertebrae BMD, percent bone volume, and biomechanical strength, when compared with the OVX+V group. The changes of mucoid degeneration in the nucleus pulposus and calcification in the middle cartilage endplate were more moderate in the OVX+CT group compared with the OVX+V group, and immunohistochemistry revealed a significant increase in aggrecan and type II collagen expressions, but marked reductions in matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 expressions in the OVX+CT group.

Conclusions

Salmon calcitonin treatment was effective in delaying the process of the disc degeneration in OVX rats. The underlying mechanisms may be related to preservation of structural integrity and function of vertebrae, and affecting extracellular matrix metabolism by modulating the expressions of MMPs, aggrecan and type II collagen to protect the disc from degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Benneker LM, Heini PF, Alini M, Anderson SE, Ito K (2005) 2004 Young Investigator Award Winner: vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine (Phila Pa 1976) 30:167–173 (00007632-200501150-00002[pii])

    Article  Google Scholar 

  2. Wang Y, Battie MC, Boyd SK, Videman T (2011) The osseous endplates in lumbar vertebrae: thickness, bone mineral density and their associations with age and disk degeneration. Bone 48:804–809. doi:10.1016/j.bone.2010.12.005

    Article  PubMed  Google Scholar 

  3. Wang T, Zhang L, Huang C, Cheng AG, Dang GT (2004) Relationship between osteopenia and lumbar intervertebral disc degeneration in ovariectomized rats. Calcif Tissue Int 75:205–213. doi:10.1007/s00223-004-0240-8

    Article  CAS  PubMed  Google Scholar 

  4. Homminga J, Aquarius R, Bulsink VE, Jansen CT, Verdonschot N (2012) Can vertebral density changes be explained by intervertebral disc degeneration? Med Eng Phys 34:453–458. doi:10.1016/j.medengphy.2011.08.003

    Article  PubMed  Google Scholar 

  5. Baron YM, Brincat MP, Calleja-Agius J, Calleja N (2009) Intervertebral disc height correlates with vertebral body T-scores in premenopausal and postmenopausal women. Menopause Int 15:58–62. doi:10.1258/mi.2009.009013

    PubMed  Google Scholar 

  6. Luo Y, Zhang L, Wang WY, Hu QF, Song HP, Su YL, Zhang YZ (2013) Alendronate retards the progression of lumbar intervertebral disc degeneration in ovariectomized rats. Bone 55:439–448. doi:10.1016/j.bone.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  7. Karsdal MA, Sondergaard BC, Arnold M, Christiansen C (2007) Calcitonin affects both bone and cartilage: a dual action treatment for osteoarthritis? Ann N Y Acad Sci 1117:181–195. doi:10.1196/annals.1402.041

    Article  CAS  PubMed  Google Scholar 

  8. Sondergaard BC, Madsen SH, Segovia-Silvestre T, Paulsen SJ, Christiansen T, Pedersen C, Bay-Jensen AC, Karsdal MA (2010) Investigation of the direct effects of salmon calcitonin on human osteoarthritic chondrocytes. BMC Musculoskelet Disord 11:62. doi:10.1186/1471-2474-11-62

    Article  PubMed Central  PubMed  Google Scholar 

  9. Sondergaard BC, Wulf H, Henriksen K, Schaller S, Oestergaard S, Qvist P, Tanko LB, Bagger YZ, Christiansen C, Karsdal MA (2006) Calcitonin directly attenuates collagen type II degradation by inhibition of matrix metalloproteinase expression and activity in articular chondrocytes. Osteoarthr Cartil 14:759–768. doi:10.1016/j.joca.2006.01.014

    Article  CAS  PubMed  Google Scholar 

  10. Li M, Shen Y, Burton KW, DeLuca PP, Mehta RC, Baumann BD, Wronski TJ (1996) A comparison of the skeletal effects of intermittent and continuous administration of calcitonin in ovariectomized rats. Bone 18:375–380. doi:10.1016/8756-3282(96)00014-2

    Article  PubMed  Google Scholar 

  11. Shen Y, Li M, Wronski TJ (1997) Calcitonin provides complete protection against cancellous bone loss in the femoral neck of ovariectomized rats. Calcif Tissue Int 60:457–461

    Article  CAS  PubMed  Google Scholar 

  12. Mosekilde L, Danielsen CC, Knudsen UB (1993) The effect of aging and ovariectomy on the vertebral bone mass and biomechanical properties of mature rats. Bone 14:1–6

    Article  CAS  PubMed  Google Scholar 

  13. Allon AA, Aurouer N, Yoo BB, Liebenberg EC, Buser Z, Lotz JC (2010) Structured coculture of stem cells and disc cells prevent disc degeneration in a rat model. Spine J 10:1089–1097. doi:10.1016/j.spinee.2010.09.014

    Article  PubMed Central  PubMed  Google Scholar 

  14. Keller TS, Hansson TH, Abram AC, Spengler DM, Panjabi MM (1989) Regional variations in the compressive properties of lumbar vertebral trabeculae. Effects of disc degeneration. Spine (Phila Pa 1976) 14:1012–1019

    Article  CAS  Google Scholar 

  15. Stokes IA, Iatridis JC (2004) Mechanical conditions that accelerate intervertebral disc degeneration: overload versus immobilization. Spine (Phila Pa 1976) 29:2724–2732 (00007632-200412010-00016[pii])

    Article  Google Scholar 

  16. Pugh JW, Rose RM, Radin EL (1973) Elastic and viscoelastic properties of trabecular bone: dependence on structure. J Biomech 6:475–485

    Article  CAS  PubMed  Google Scholar 

  17. Suri P, Miyakoshi A, Hunter DJ, Jarvik JG, Rainville J, Guermazi A, Li L, Katz JN (2011) Does lumbar spinal degeneration begin with the anterior structures? A study of the observed epidemiology in a community-based population. BMC Musculoskelet Disord 12:202. doi:10.1186/1471-2474-12-202

    Article  PubMed Central  PubMed  Google Scholar 

  18. Sornay-Rendu E, Munoz F, Duboeuf F, Delmas PD (2004) Disc space narrowing is associated with an increased vertebral fracture risk in postmenopausal women: the OFELY Study. J Bone Miner Res 19:1994–1999. doi:10.1359/JBMR.040904

    Article  PubMed  Google Scholar 

  19. Garnero P, Sornay-Rendu E, Arlot M, Christiansen C, Delmas PD (2004) Association between spine disc degeneration and type II collagen degradation in postmenopausal women: the OFELY study. Arthritis Rheum 50:3137–3144. doi:10.1002/art.20493

    Article  PubMed  Google Scholar 

  20. Muscat Baron Y, Brincat MP, Galea R, Calleja N (2007) Low intervertebral disc height in postmenopausal women with osteoporotic vertebral fractures compared to hormone-treated and untreated postmenopausal women and premenopausal women without fractures. Climacteric 10:314–319. doi:10.1080/13697130701460640

    Article  CAS  PubMed  Google Scholar 

  21. Baron YM, Brincat MP, Galea R, Calleja N (2005) Intervertebral disc height in treated and untreated overweight post-menopausal women. Hum Reprod 20:3566–3570. doi:10.1093/humrep/dei251

    Article  PubMed  Google Scholar 

  22. Chung SA, Wei AQ, DE Connor, Webb GC, Molloy T, Pajic M, Diwan AD (2007) Nucleus pulposus cellular longevity by telomerase gene therapy. Spine (Phila Pa 1976) 32:1188–1196. doi:10.1097/BRS.0b013e31805471a3

    Article  Google Scholar 

  23. Griffith JF, Yeung DK, Antonio GE, Lee FK, Hong AW, Wong SY, Lau EM, Leung PC (2005) Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 236:945–951. doi:10.1148/radiol.2363041425

    Article  PubMed  Google Scholar 

  24. Griffith JF, Yeung DK, Tsang PH, Choi KC, Kwok TC, Ahuja AT, Leung KS, Leung PC (2008) Compromised bone marrow perfusion in osteoporosis. J Bone Miner Res 23:1068–1075. doi:10.1359/jbmr.080233

    Article  PubMed  Google Scholar 

  25. Urban JP, Smith S, Fairbank JC (2004) Nutrition of the intervertebral disc. Spine (Phila Pa 1976 29:2700–2709 (00007632-200412010-00014 [pii])

    Article  Google Scholar 

  26. Holm S, Holm AK, Ekstrom L, Karladani A, Hansson T (2004) Experimental disc degeneration due to endplate injury. J Spinal Disord Tech 17:64–71 00024720-200402000-00012[pii]

    Article  PubMed  Google Scholar 

  27. Turgut M, Uslu S, Uysal A, Yurtseven ME, Ustun H (2003) Changes in vascularity of cartilage endplate of degenerated intervertebral discs in response to melatonin administration in rats. Neurosurg Rev 26:133–138

    Article  PubMed  Google Scholar 

  28. Sztrolovics R, Alini M, Roughley PJ, Mort JS (1997) Aggrecan degradation in human intervertebral disc and articular cartilage. Biochem J 326(Pt 1):235–241

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Weiler C, Nerlich AG, Zipperer J, Bachmeier BE, Boos N (2002) 2002 SSE Award Competition in Basic Science: expression of major matrix metalloproteinases is associated with intervertebral disc degradation and resorption. Eur Spine J 11:308–320. doi:10.1007/s00586-002-0472-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Roberts S, Caterson B, Menage J, Evans EH, Jaffray DC, Eisenstein SM (2000) Matrix metalloproteinases and aggrecanase: their role in disorders of the human intervertebral disc. Spine (Phila Pa 1976) 25:3005–3013

    Article  CAS  Google Scholar 

  31. Patel KP, Sandy JD, Akeda K, Miyamoto K, Chujo T, An HS, Masuda K (2007) Aggrecanases and aggrecanase-generated fragments in the human intervertebral disc at early and advanced stages of disc degeneration. Spine (Phila Pa 1976) 32:2596–2603. doi:10.1097/BRS.0b013e318158cb85

    Article  Google Scholar 

  32. Inkinen RI, Lammi MJ, Lehmonen S, Puustjarvi K, Kaapa E, Tammi MI (1998) Relative increase of biglycan and decorin and altered chondroitin sulfate epitopes in the degenerating human intervertebral disc. J Rheumatol 25:506–514

    CAS  PubMed  Google Scholar 

  33. Lauer-Fields JL, Tuzinski KA, Shimokawa K, Nagase H, Fields GB (2000) Hydrolysis of triple-helical collagen peptide models by matrix metalloproteinases. J Biol Chem 275:13282–13290 (275/18/13282[pii])

    Article  CAS  PubMed  Google Scholar 

  34. Le Maitre CL, Freemont AJ, Hoyland JA (2004) Localization of degradative enzymes and their inhibitors in the degenerate human intervertebral disc. J Pathol 204:47–54. doi:10.1002/path.1608

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Hong Xu for technical assistance with animal procedures and histological analysis, Yan-Li Zhu for help with dual energy X-ray absorptiometry scanning. This work was partly supported by National Natural Science Foundation of China (No. 31171136), and Natural Science Foundation of Hebei province (No. H2013209257).

Conflict of interest

The authors have no actual or potential conflict of interests including any financial, personal, or other relationships with other people or organizations that could inappropriately influence, or be perceived to influence, this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Zhang, L., Wang, WY. et al. The inhibitory effect of salmon calcitonin on intervertebral disc degeneration in an ovariectomized rat model. Eur Spine J 24, 1691–1701 (2015). https://doi.org/10.1007/s00586-014-3611-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-014-3611-5

Keywords

Navigation