Skip to main content

Advertisement

Log in

Posterior short-segment instrumentation and limited segmental decompression supplemented with vertebroplasty with calcium sulphate and intermediate screws for thoracolumbar burst fractures

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Thoracolumbar burst fractures treated with short-segment posterior instrumentation without anterior column support is associated with a high incidence of implant failure and correction loss. This study was designed to evaluate the clinical and radiographic results following posterior short-segment instrumentation and limited segmental decompression supplemented with vertebroplasty with calcium sulphate and intermediate screws for patients with severe thoracolumbar burst fractures.

Methods

Twenty-eight patients with thoracolumbar burst fractures of LSC point 7 or more underwent this procedure. The average follow-up was 27.5 months. Demographic data, radiographic parameters, neurologic function, clinical outcomes and treatment-related complications were prospectively evaluated.

Results

Loss of vertebral body height and segmental kyphosis was 55.3 % and 20.2° before surgery, which significantly improved to 12.2 % and 5.4° at the final follow-up, respectively. Loss of kyphosis correction was 2.2°. The preoperative canal encroachment was 49 % that significantly improved to 8.8 %. The preoperative pain and function level showed a mean VAS score of 9.2 and ODI of 89.9 % that improved to 1.4 and 12.9 % at the final follow-up, respectively. No implant failure was observed in this series, and cement leakage occurred in two cases without clinical implications.

Conclusions

Excellent reduction and maintenance of thoracolumbar burst fractures can be achieved with short-segment pedicle instrumentation supplemented with anterior column reconstruction and intermediate screws. The resultant circumferential stabilization combined with a limited segmental decompression resulted in improved neurologic function and satisfactory clinical outcomes, with a low incidence of implant failure and progressive deformity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alpantaki K, Bano A, Pasku D et al (2010) Thoracolumbar burst fractures: a systematic review of management. Orthopedics 33:422–429

    Article  PubMed  Google Scholar 

  2. Kallemeier PM, Beaubien BP, Buttermann GR et al (2008) In vitro analysis of anterior and posterior fixation in an experimental unstable burst fracture model. J Spinal Disord Tech 21:216–224

    Article  PubMed  Google Scholar 

  3. Kramer DL, Rodgers WB, Mansfield FL (1995) Transpedicular instrumentation and short-segment fusion of thoracolumbar fractures: a prospective study using a single instrumentation system. J Orthop Trauma 9:499–506

    Article  CAS  PubMed  Google Scholar 

  4. McCormack T, Karaikovic E, Gaines RW (1994) The load sharing classification of spine fractures. Spine 19:1741–1744 (Phila Pa 1976)

    Article  CAS  PubMed  Google Scholar 

  5. McLain RF, Burkus JK, Benson DR (2001) Segmental instrumentation for thoracic and thoracolumbar fractures: prospective analysis of construct survival and five-year follow-up. Spine J 1:310–323

    Article  CAS  PubMed  Google Scholar 

  6. Butt MF, Farooq M, Mir B et al (2007) Management of unstable thoracolumbar spinal injuries by posterior short segment spinal fixation. Int Orthop 31:259–264

    Article  PubMed Central  PubMed  Google Scholar 

  7. Knop C, Fabian HF, Bastian L et al (2001) Late results of thoracolumbar fractures after posterior instrumentation and transpedicular bone grafting. Spine 26:88–99 (Phila Pa 1976)

    Article  CAS  PubMed  Google Scholar 

  8. Shen YX, Zhang P, Zhao JG et al (2011) Pedicle screw instrumentation plus augmentation vertebroplasty using calcium sulfate for thoracolumbar burst fractures without neurologic deficits. Orthop Surg 3:1–6

    Article  CAS  PubMed  Google Scholar 

  9. Liao JC, Fan KF, Keorochana G et al (2010) Transpedicular grafting after short-segment pedicle instrumentation for thoracolumbar burst fracture: calcium sulfate cement versus autogenous iliac bone graft. Spine 35:1482–1488 (Phila Pa 1976)

    PubMed  Google Scholar 

  10. Rahamimov N, Mulla H, Shani A et al (2012) Percutaneous augmented instrumentation of unstable thoracolumbar burst fractures. Eur Spine J 21:850–854

    Article  PubMed Central  PubMed  Google Scholar 

  11. He D, Wu L, Sheng X et al (2013) Internal fixation with percutaneous kyphoplasty compared with simple percutaneous kyphoplasty for thoracolumbar burst fractures in elderly patients: a prospective randomized controlled trial. Eur Spine J 22:2256–2263

    Article  PubMed  Google Scholar 

  12. Korovessis P, Repantis T, Petsinis G et al (2008) Direct reduction of thoracolumbar burst fractures by means of balloon kyphoplasty with calcium phosphate and stabilization with pedicle-screw instrumentation and fusion. Spine 33:E100–E108 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  13. Marco RA, Kushwaha VP (2009) Thoracolumbar burst fractures treated with posterior decompression and pedicle screw instrumentation supplemented with balloon-assisted vertebroplasty and calcium phosphate reconstruction. J Bone Joint Surg Am 91:20–28

    Article  PubMed  Google Scholar 

  14. Verlaan JJ, Dhert WJ, Verbout AJ et al (2005) Balloon vertebroplasty in combination with pedicle screw instrumentation: a novel technique to treat thoracic and lumbar burst fractures. Spine 30:E73–E79 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  15. Edwards CC, Levine AM (1986) Early rod-sleeve stabilization of the injured thoracic and lumbar spine. Orthop Clin North Am 17:121–145

    CAS  PubMed  Google Scholar 

  16. Guven O, Kocaoglu B, Bezer M et al (2009) The use of screw at the fracture level in the treatment of thoracolumbar burst fractures. J Spinal Disord Tech 22:417–421

    Article  PubMed  Google Scholar 

  17. Turner TM, Urban RM, Gitelis S et al (2001) Radiographic and histologic assessment of calcium sulfate in experimental animal models and clinical use as a resorbable bone-graft substitute, a bone-graft expander, and a method for local antibiotic delivery. One institution’s experience. J Bone Joint Surg Am 83(A Suppl 2):8–18

    PubMed  Google Scholar 

  18. Kelly CM, Wilkins RM (2004) Treatment of benign bone lesions with an injectable calcium sulfate-based bone graft substitute. Orthopedics 27(1 Suppl.):s131–s135

    PubMed  Google Scholar 

  19. Marino RJ, Barros T, Biering-Sorensen F et al (2003) International standards for neurological classification of spinal cord injury. J Spinal Cord Med 26(Suppl 1):S50–S56

    PubMed  Google Scholar 

  20. Aebi M, Thalgott JS, Webb JK (1998) AO ASIF principles in spine surgery. Springer, Berlin, pp 107–122

    Book  Google Scholar 

  21. Keynan O, Fisher CG, Vaccaro A et al (2006) Radiographic measurement parameters in thoracolumbar fractures: a systematic review and consensus statement of the spine trauma study group. Spine 31:E156–E165 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  22. Walsh TL, Hanscom B, Lurie JD et al (2003) Is a condition-specific instrument for patients with low back pain/leg symptoms really necessary? The responsiveness of the Oswestry Disability Index, MODEMS, and the SF-36. Spine 28:607–615 (Phila Pa 1976)

    PubMed  Google Scholar 

  23. Kaneda K, Taneichi H, Abumi K et al (1997) Anterior decompression and stabilization with the Kaneda device for thoracolumbar burst fractures associated with neurological deficits. J Bone Joint Surg Am 79:69–83

    CAS  PubMed  Google Scholar 

  24. Yang H, Pan J, Sun Z et al (2012) Percutaneous augmented instrumentation of unstable thoracolumbar burst fractures: our experience in preventing cement leakage. Eur Spine J 21:1410–1412 (author reply 1413)

    Article  PubMed Central  PubMed  Google Scholar 

  25. Ge CM, Wang YR, Jiang SD et al (2011) Thoracolumbar burst fractures with a neurological deficit treated with posterior decompression and interlaminar fusion. Eur Spine J 20:2195–2201

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by grants from the National Natural Sciences Foundation of China (81102037).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinlong Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Lv, G., Xu, B. et al. Posterior short-segment instrumentation and limited segmental decompression supplemented with vertebroplasty with calcium sulphate and intermediate screws for thoracolumbar burst fractures. Eur Spine J 23, 1548–1557 (2014). https://doi.org/10.1007/s00586-014-3374-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-014-3374-z

Keywords

Navigation