Skip to main content
Log in

Evolution of the ischio-iliac lordosis during natural growth and its relation with the pelvic incidence

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Human fully upright ambulation, with fully extended hips and knees, and the body’s center of gravity directly above the hips, is unique in nature, and distinguishes humans from all other mammalians. This bipedalism is made possible by the development of a lordosis between the ischium and ilium; it allows to ambulate in this unique bipedal manner, without sacrificing forceful extension of the legs. This configuration in space introduces unique biomechanical forces with relevance for a number of spinal conditions. The aim of this study was to quantify the development of this lordosis between ischium and ilium in the normal growing and adult spine and to evaluate its correlation with the well-known clinical parameter, pelvic incidence.

Methods

Consecutive series of three-dimensional computed tomography scans of the abdomen of 189 children and 310 adults without spino-pelvic pathologies were used. Scan indications were trauma screening or acute abdominal pathology. Using previously validated image processing techniques, femoral heads, center of the sacral endplate and the axes of the ischial bones were semi-automatically identified. A true sagittal view of the pelvis was automatically reconstructed, on which ischio-iliac angulation and pelvic incidence were calculated. The ischio-iliac angle was defined as the angle between the axes of the ischial bones and the line from the midpoint of the sacral endplate to the center of the femoral heads.

Results

A wide natural variation of the ischio-iliac angle (3°–46°) and pelvic incidence (14°–77°) was observed. Pearson’s analysis demonstrated a significant correlation between the ischio-iliac angle and pelvic incidence (r = 0.558, P < 0.001). Linear regression analysis revealed that ischio-iliac angle, as well as pelvic incidence, increases during childhood (+7° and +10°, respectively) and becomes constant after adolescence.

Conclusions

The development of the ischio-iliac lordosis is unique in nature, is in harmonious continuity with the highly individual lumbar lordosis and defines the way the human spine is biomechanically loaded. The practical parameter that reflects this is the pelvic incidence; both values increase during growth and remain stable in adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abitbol MM (1988) Evolution of the ischial spine and of the pelvic floor in the Hominoidea. Am J Phys Anthropol. doi:10.1002/ajpa.1330750107

    Google Scholar 

  2. Alexander RM (2004) Bipedal animals, and their differences from humans. J Anat. doi:10.1111/j.0021-8782.2004.00289.x

    PubMed Central  PubMed  Google Scholar 

  3. Been E, Gomez-Olivencia A, Kramer PA (2014) Lumbar lordosis in extinct hominins: Implications of the pelvic incidence. Am J Phys Anthropol. doi:10.1002/ajpa.22507

    PubMed  Google Scholar 

  4. Berge C (1998) Heterochronic processes in human evolution: an ontogenetic analysis of the hominid pelvis. Am J Phys Anthropol 105:441–459

    Article  CAS  PubMed  Google Scholar 

  5. Boulay C, Tardieu C, Hecquet J, Benaim C, Mouilleseaux B, Marty C, Prat-Pradal D, Legaye J, Duval-Beaupère G, Pélissier J (2006) Sagittal alignment of spine and pelvis regulated by pelvic incidence: standard values and prediction of lordosis. Eur Spine J 15:415–422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Castelein RM, van Dieën JH, Smit TH (2005) The role of dorsal shear forces in the pathogenesis of adolescent idiopathic scoliosis—a hypothesis. Med Hypothesis 65:501–508

    Article  Google Scholar 

  7. Cil A, Yazici M, Uzumcugil A, Kandemir U, Alanay A, Alanay Y, Acaroglu RE, Surat A (2005) The evolution of sagittal segmental alignment of the spine during childhood. Spine (Phila Pa 1976) 30:93–100

    Google Scholar 

  8. D’Août K, Vereecke E, Schoonaert K, De Clercq D, Van Elsacker L, Aerts P (2004) Locomotion in bonobos (Pan paniscus): differences and similarities between bipedal and quadrupedal terrestrial walking, and a comparison with other locomotor modes. J Anat 204:353–361

    Article  PubMed Central  PubMed  Google Scholar 

  9. Dickson RA (1988) The aetiology of spinal deformities. Lancet 1:1151–1155

    Article  CAS  PubMed  Google Scholar 

  10. Greiner TM (2002) The morphology of the gluteus maximus during human evolution: Prerequisite or consequence of the upright bipedal posture? Hum Evol. doi:10.1007/BF02436430

    Google Scholar 

  11. Hanson DS, Bridwell KH, Rhee JM, Lenke LG (2002) Correlation of pelvic incidence with low- and high-grade isthmic spondylolisthesis. Spine (Phila Pa 1976) 27:2026–2029

    Article  Google Scholar 

  12. Hresko MT, Labelle H, Roussouly P, Berthonnaud E (2007) Classification of high-grade spondylolistheses based on pelvic version and spine balance: possible rationale for reduction. Spine (Phila Pa 1976) 32:2208–2213

    Article  Google Scholar 

  13. Kibii JM, Churchill SE, Schmid P, Carlson KJ, Reed ND, de Ruiter DJ, Berger LR (2011) A partial pelvis of Australopithecus sediba. Science. doi:10.1126/science.1202521

    Google Scholar 

  14. Kummer B (1992) Biomechanical problems of upright posture. Ann Anat 174:33–39

    Article  CAS  PubMed  Google Scholar 

  15. Labelle H, Roussouly P, Berthonnaud E, Dimnet J, O’Brien M (2005) The importance of spino-pelvic balance in L5-s1 developmental spondylolisthesis: a review of pertinent radiologic measurements. Spine (Phila Pa 1976) 30:S27–S34

    Article  Google Scholar 

  16. Lafage V, Schwab F, Skalli W, Hawkinson N, Gagey PM, Ondra S, Farcy JP (2008) Standing balance and sagittal plane spinal deformity: analysis of spinopelvic and gravity line parameters. Spine (Phila Pa 1976) 33:1572–1578

    Article  Google Scholar 

  17. Legaye J, Duval-Beaupere G, Hecquet J, Marty C (1998) Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J 7:99–103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Lorentz A (1886) Pathologie und Therapie der seitlichen Rückgrat-verkrümmungen (Scoliosis). Alfred Hölder, Vienna

    Google Scholar 

  19. Lovejoy CO (2005) The natural history of human gait and posture. Part 1. Spine and pelvis. Gait Posture. doi:10.1016/j.gaitpost.2004.01.001

    Google Scholar 

  20. Mac-Thiong JM, Labelle H, Charlebois M, Huot MP, de Guise JA (2003) Sagittal plane analysis of the spine and pelvis in adolescent idiopathic scoliosis according to the coronal curve type. Spine (Phila Pa 1976) 28:1404–1409

    Google Scholar 

  21. Mac-Thiong JM, Berthonnaud E, Dimar JR, Betz RR, Labelle H (2004) Sagittal alignment of the spine and pelvis during growth. Spine (Phila Pa 1976) 29:1642–1647

    Article  Google Scholar 

  22. Mac-Thiong JM, Labelle H, Berthonnaud E, Betz RR, Roussouly P (2007) Sagittal spinopelvic balance in normal children and adolescents. Eur Spine J 16:227–234

    Article  PubMed Central  PubMed  Google Scholar 

  23. Mac-Thiong JM, Wang Z, de Guise JA, Labelle H (2008) Postural model of sagittal spino-pelvic alignment and its relevance for lumbosacral developmental spondylolisthesis. Spine (Phila Pa 1976) 33:2316–2325

    Article  Google Scholar 

  24. Mangione P, Gomez D, Sénégas J (1997) Study of the course of the incidence angle during growth. Eur Spine J 6:163–167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Nicoladoni C (1904) Anatomie und Mechanismus der Skoliose. Urban and Schwarzenberg, München Berlin Wien

    Google Scholar 

  26. Payne RC, Crompton RH, Isler K, Savage R, Vereecke EE, Gunther MM, Thorpe SK, D’Août K (2006) Morphological analysis of the hindlimb in apes and humans. II. Moment arms. J Anat 208:725–742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Pontzer H, Raichlen DA, Sockol MD (2009) The metabolic cost of walking in humans, chimpanzees, and early hominins. J Hum Evol. doi:10.1016/j.jhevol.2008.09.001

    PubMed  Google Scholar 

  28. Poussa MS, Heliövaara MM, Seitsamo JT, Könönen MH, Hurmerinta KA, Nissinen MJ (2005) Development of spinal posture in a cohort of children from the age of 11–22 years. Eur Spine J 14:738–742

    Article  PubMed Central  PubMed  Google Scholar 

  29. Rak Y (1991) Lucy’s pelvic anatomy: its role in bipedal gait. J Hum Evol 20:283–290

    Article  Google Scholar 

  30. Robinson JT, Freedman L, Sigmon BA (1972) Some aspects of pongid and hominid bipedality. J Hum Evol 1:361–369

    Article  Google Scholar 

  31. Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine (Phila Pa 1976) 30:346–353

    Article  Google Scholar 

  32. Tardieu C, Bonneau N, Hecquet J, Boulay C, Marty C, Legaye J, Duval-Beaupere G (2013) How is sagittal balance acquired during bipedal gait acquisition? Comparison of neonatal and adult pelves in three dimensions. Evolutionary implications. J Hum Evol. doi:10.1016/j.jhevol.2013.06.002

    PubMed  Google Scholar 

  33. Vaz G, Roussouly P, Berthonnaud E, Dimnet J (2002) Sagittal morphology and equilibrium of pelvis and spine. Eur Spine J 11:80–87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Vialle R, Levassor N, Rillardon L, Templier A, Skalli W, Guigui P (2005) Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg Am 87:260–267

    Article  PubMed  Google Scholar 

  35. Voutsinas SA, MacEwen GD (1986) Sagittal profiles of the spine. Clin Orthop Relat Res 210:235–242

    PubMed  Google Scholar 

  36. Vrtovec T, Janssen MM, Likar B, Castelein RM, Viergever MA, Pernus F (2012) A review of methods for evaluating the quantitative parameters of sagittal pelvic alignment. Spine J. doi:10.1016/j.spinee.2012.02.013

    PubMed  Google Scholar 

  37. Vrtovec T, Janssen MM, Pernus F, Castelein RM, Viergever MA (2012) Analysis of pelvic incidence from three-dimensional images of a normal population. Spine (Phila Pa 1976). doi:10.1097/BRS.0b013e31823770af

    Google Scholar 

  38. Wang WJ, Crompton RH, Li Y, Gunther MM (2003) Energy transformation during erect and ‘bent-hip, bent-knee’ walking by humans with implications for the evolution of bipedalism. J Hum Evol 44:563–579

    Article  CAS  PubMed  Google Scholar 

  39. Washburn SL (1950) The analysis of primate evolution with particular reference to the origin of man. Cold Spring Harb Symp Quant Biol 15:67–78

    Article  CAS  PubMed  Google Scholar 

  40. Yoshimoto H, Sato S, Masuda T, Kanno T, Shundo M, Hyakumachi T, Yanagibashi Y (2005) Spinopelvic alignment in patients with osteoarthrosis of the hip: a radiographic comparison to patients with low back pain. Spine (Phila Pa 1976) 30:1650–1657

    Article  Google Scholar 

Download references

Conflict of interest

This authors of this study were supported by the Alexandre Suerman MD/PhD program, an unrestricted Medtronic research grant and by AOSpine, DePuy Synthes Spine and Johnson & Johnson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom P. C. Schlösser.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 794 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlösser, T.P.C., Janssen, M.M.A., Vrtovec, T. et al. Evolution of the ischio-iliac lordosis during natural growth and its relation with the pelvic incidence. Eur Spine J 23, 1433–1441 (2014). https://doi.org/10.1007/s00586-014-3358-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-014-3358-z

Keywords

Navigation