Skip to main content

Advertisement

Log in

Aging of bovine spinal cord: an alteration of myelinated nerve fibers in the white matter

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

To gain more knowledge of age-related changes in the spinal cord of the bovine species, the structure of 15 clinically normal aged cattle (Holstein-Friesian cows 8–13 years of age) was histopathologically examined. In 12 (80%) of the 15 animals, the common histopathological features identified were alteration of a small number of myelinated nerve fibers in the white matter, with less than 4 nerve fibers affected per cross-sectional area of the spinal cord. Alteration of nerve fibers was characterized by dilation of myelin sheaths with loss of axons or macrophage infiltration, resembling features of Wallerian axonal degeneration. The occurrence of this nerve fiber alteration had a predilection for the lateral and ventral white matter funiculi. In eight cattle, so-called axonal spheroids were rarely present in the white matter. There was little evidence of glial reaction against nerve fiber alteration. Gray horn neurons were unremarkable. Lipofuscin granules were recognized in neurons, glial cells, and neuropil of the medulla oblongata examined in six cows. The changes observed in the spinal cord white matter of the present cows were similar to those described previously in aged human beings and domestic and laboratory animals, and thus were likely to have been a phenomenon which was closely related to aging. The strict clinical significance of the histopathological changes in the spinal cord white matter remains undetermined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adalbert R, Coleman MP (2013) Review: axon pathology in age-related neurodegenerative disorders. Neuropathol Appl Neurobiol 39:90–108

    Article  CAS  PubMed  Google Scholar 

  • Biasibetti E, Bisanzio D, Mioletti S, Amedeo S, Iuliano A, Bianco P, Capucchio MT (2016) Spontaneous age-related changes of peripheral nerves in cattle: morphological and biochemical studies. Anat Histol Embrol 45:100–108

    Article  CAS  Google Scholar 

  • Borras D, Ferrer I, Pumarola M (1999) Age-related changes in the brain of the dog. Vet Pathol 36:202–211

    Article  CAS  PubMed  Google Scholar 

  • Buchman AS, Leurgans SE, VanderHorst VGJM et al (2018) Spinal motor neurons and motor function in older adults. J Neurol 266:174–182. https://doi.org/10.1007/s00415-018-9118-y

    Article  PubMed  Google Scholar 

  • Cummings BJ, Head E, Afagh AJ, Milgram NW, Cotman CW (1996a) β-amyloid accumulation correlates with cognitive dysfunction in the aged canine. Neurobiol Learn Mem 66:11–23

    Article  CAS  PubMed  Google Scholar 

  • Cummings BJ, Satou T, Head E et al (1996b) Diffuse plaques contain C-terminal Aβ42 and not Aβ40: evidence from cats and dogs. Neurobiol Aging 14:653–659

    Google Scholar 

  • Double KL, Dedov VN, Fedorow H, Kettle E, Halliday GM, Garner B, Brunk UT (2008) The comparative biology of neuromelanin and lipofuscin in the human brain. Cell & Mol Life Sci 65:1669–1682

    Article  CAS  Google Scholar 

  • Ferrer I, Pumarola M, Rivera R, Zújar MJ, Cruz-Sánchez F, Vidal A (1993) Primary central white matter degeneration in old dogs. Acta Neuropathol 86:172–175

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa K (1967) A unique type of axonal alteration (so-called axonal dystrophy) as seen in Goll’s nucleus of 277 cases of controls. Acta Neuropathol 8:255–275

    Article  CAS  PubMed  Google Scholar 

  • Gavier-Widen D, Wells GAH, Simmons MM, Wilesmith JWW, Ryan J (2001) Histological observations on the brains of symptomless 7-year-old cattle. J Comp Pathol 124:52–59

    Article  CAS  PubMed  Google Scholar 

  • Geertsen SS, Willerslev-Olsen M, Lorentzen J, Nielsen JB (2017) Development and aging of human spinal cord circuitries. J Neurophysiol 118:1133–1140

    Article  PubMed  PubMed Central  Google Scholar 

  • Goyal VL (1982) Lipofuscin pigment accumulation in human brain during aging. Exp Gerontol 17:481–487

    Article  CAS  PubMed  Google Scholar 

  • Hanshaw DM, Finnie JW, Manavis J, Kessell AE (2015) Axonal spheroid accumulation in the brainstem and spinal cord of a young Angus cow with ataxia. Aust Vet J 93:283–286

    Article  CAS  PubMed  Google Scholar 

  • Hubbard BM, Andersson JM (1985) Age-related variations in the neuron content of the cerebral cortex in senile dementia of Alzheimer type. Neuropathol Appl Neurobiol 11:369–382

    Article  CAS  PubMed  Google Scholar 

  • Ishihara T, Gondo T, Takahashi M, Uchino F, Ikeda SI, Allsop D, Imai K (1991) Immunohistochemical and immunoelectron microscopical characterization of cereberovascular and senile plaque amyloid in aged dogs’ brains. Brain Res 548:196–205

    Article  CAS  PubMed  Google Scholar 

  • Itabashi HH, Andrews JM, Tomiyasu U, Erlich SS, Sathyavagiswaran L (2007) Forensic neuropathology. Academic Press, San Diego

    Google Scholar 

  • Jahns H, Callanan J, McElroy MC et al (2006) Age-related and non-age-related changes in 100 surveyed horse brains. Vet Pathol 43:740–750

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey M (1992) A neuropathological survey of brains submitted under the bovine spongiform encephalopathy orders in Scotland. Vet Rec 131:332–337

    Article  CAS  PubMed  Google Scholar 

  • Jolly RD, Douglas BV, Davey PM et al (1995) Lipofuscin in bovine muscle and brain: a model for studying age pigment. Gerontol 41(Suppl 2):183–195

    Google Scholar 

  • Jubb KVF, Huxtable CR (1993) The nervous system. In: Jubb KVF, Kennedy PC, Palmer N (eds) Pathology of domestic animals, vol 1, 4th edn. Academic Press, San Diego, pp 267–439

    Chapter  Google Scholar 

  • Jyothi HJ, Vidyadhara DJ, Mahadevan A, Philip M, Parmar SK, Manohari SG, Shankar SK, Raju TR, Alladi PA (2015) Aging causes morphological alterations in astrocytes and microglia in human substantia nigra pars compacta. Neurobiol Aging 36:3321–3333

    Article  CAS  PubMed  Google Scholar 

  • Kessell AE, Finnie JW, Blumbergs PC et al (2012) Neuroaxonal dystrophy in Australian merino lambs. J Comp Pathol 142:62–72

    Article  Google Scholar 

  • Konno T, Yoshida K, Mizuno T, Kawarai T, Tada M, Nozaki H, Ikeda SI, Nishizawa M, Onodera O, Wszolek ZK, Ikeuchi T (2017) Clinical and genetic characterization of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia associated with CSF1R mutation. Eur J Neurol 24:37–45

    Article  CAS  PubMed  Google Scholar 

  • de Lahunta A (1983) Veterinary neuroanatomy and clinical neurology, 2nd edn. W. B. Saunders, Philadelphia

    Google Scholar 

  • Lexell J (1997) Evidence for nervous system degeneration with advancing age. J Nutr 127:1011S–1013S

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Yang Y, Xia Y, Zhu W, Leak RK, Wei Z, Wang J, Hu X (2017) Aging of cerebral white matter. Ageing Res Rev 34:64–76

    Article  CAS  PubMed  Google Scholar 

  • Lowe J, Mirra SS, Hyman BT et al (2008) Ageing and dementia. In: Love S, Louis DN, Ellison DW (eds) Greenfield’s neuropathology, 8th edn. Tayler & Francis, Boca Raton, pp 1031–1152

    Google Scholar 

  • Mani RB, Lohr JB, Jeste DV (1986) Hippocampal pyramidal cells and aging in the human: a quantitative study of neuronal loss in sectors CA1 to CA4. Exp Neurol 94:29–40

    Article  CAS  PubMed  Google Scholar 

  • Mann DM, Yates PO, Stamp JE (1978) The relationship between lipofuscin pigment and ageing in the human nervous system. J Neurol Sci 37(1–2):83–93

    Article  CAS  PubMed  Google Scholar 

  • Marner L, Nyengaard JR, Tang Y, Pakkenberg B (2003) Marked loss of myelinated nerve fibers in the human brain with age. J Comp Neurol 462:144–152

    Article  PubMed  Google Scholar 

  • Mufson EJ, Stein DG (1980) Degeneration in the spinal cord of old rats. Exp Neurol 70:179–186

    Article  CAS  PubMed  Google Scholar 

  • Nielsen K, Peters A (2000) The effects of aging on the frequency of nerve fibers in rhesus monkey striate cortex. Neurobiol Aging 21:621–628

    Article  CAS  PubMed  Google Scholar 

  • Ojo JO, Rezaie P, Gabbott PL et al (2015) Impact of age-related neuroglial cell responses on hippocampal deterioration. Front Aging Neurosci 7:57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okazaki T, Kanchiku T, Nishida N et al (2018) Age-related changes of the spinal cord: a biomechanical study. Exp Therap Med 15:2824–2829

    Google Scholar 

  • Paltsyn AA, Komissarova SV (2015) Age-related changes of the brain. Patol Fiziol Eksp Ter 59:108–116

    CAS  PubMed  Google Scholar 

  • Peters A (2002) The effects of normal aging on myelin and nerve fibers: a review. J Neurocytol 31:581–593

    Article  PubMed  Google Scholar 

  • Peters (2007) The effects of normal aging on nerve fibers and neuroglia in the central nervous system. In: Riddle DR (ed) Brain aging: models, methods, and mechanisms. Taylor & Francis, Boca Raton, pp 97–126

    Chapter  Google Scholar 

  • Peters A (2009) The effects of normal aging on myelinated nerve fibers in monkey central nervous system. Front Neuroanat 3:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahimi J, Kovacs GG (2014) Prevalence of mixed pathologies in the aging brain. Alzheimers Res Ther 6:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Rotshenker S (2011) Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflammation 8:109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu J, Horkayne-Szakaly I, Xu L, Pletnikova O, Leri F, Eberhart C, Troncoso JC, Koliatsos VE (2014) The problem of axonal injury in the brains of veterans with histories of blast exposure. Acta Neuropathol Comm 2:153

    Article  Google Scholar 

  • Shimada A, Kuwamura M, Awakura T et al (1992) An immunohistochemical and ultrastructural study on age-related astrocytic gliosis in the central nervous system of dogs. J Vet Med Sci 54:29–36

    Article  CAS  PubMed  Google Scholar 

  • Stahon KE, Bastian C, Griffith S, Kidd GJ, Brunet S, Baltan S (2016) Age-related changes in axonal and mitochondrial ultrastructure and function in white matter. J Neurosci 36:9990–10001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Summers BA, Cummings BJ, de Lahunta A (1995) Neuropathology of aging. In: Veterinary neuropathology. Mosby-Year Book, Saint Louis, pp 49–67

    Google Scholar 

  • Suzuki Y, Ohta K, Suu S (1979) Correlative studies of axonal spheroids and lafora-like bodies in aged dogs. Acta Neuropathol 111:213–219

    Google Scholar 

  • Wang Y, Hashizume Y, Yoshida M, Inagaki T, Kameyama T (1999) Pathological changes of the spinal cord in centenarians. Pathol Int 49:118–124

    Article  CAS  Google Scholar 

  • Whiteford R, Getty R (1966) Distribution of lipofuscin in the canine and porcine brain as related to aging. J Gerontol 21:31–44

    Article  CAS  PubMed  Google Scholar 

  • Wider C, Wszolek ZK (2014) Hereditary diffuse leukoencephalopathy with axonal spheroids: more than just a rare disease. Neurol 82:102–103

    Article  Google Scholar 

  • Yamanami S, Ishihara T, Takahashi M et al (1992) Comparative study of intraneuronal polyglucosan bodies from patients with Lafora disease and aged dogs. Acta Pathol Jpn 42:787–791

    CAS  PubMed  Google Scholar 

  • Yanai T, Masegi T, Kawada M, Ishikawa K, Fukuda K, Yamazoe K, Iwasaki T, Ueda K, Goto N (1994) Spontaneous vascular mineralization in the brain of cows. J Comp Pathol 111:213–219

    Article  CAS  PubMed  Google Scholar 

  • Yoshino T, Uchida K, Tateyama S, Yamaguchi R, Nakayama H, Goto N (1996) A retrospective study of canine senile plaques and cerebral amyloid angiopathy. Vet Pathol 33:230–234

    Article  CAS  PubMed  Google Scholar 

  • Youssef SA, Capuccino MT, Rofina JE et al (2016) Pathology of aging brain in domestic and laboratory animals, and animal models of human neurodegenerative diseases. Vet Pathol 53:327–348

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ohfuji.

Ethics declarations

Conflict of interest

The author declares that he has no competing interests.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohfuji, S. Aging of bovine spinal cord: an alteration of myelinated nerve fibers in the white matter. Comp Clin Pathol 28, 1137–1142 (2019). https://doi.org/10.1007/s00580-019-02963-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-019-02963-6

Keywords

Navigation