Skip to main content

Advertisement

Log in

The role of angiotensin II in cardiomyogenic differentiation of human adipose tissue-derived mesenchymal stem cells

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

Adult mesenchymal stem cells (MSCs) are an attractive cell source for cardiovascular repair. Injection of MSCs into damaged heart was shown to improve cardiac functions. However, these cells are still multipotent, and hence can transdifferentiate within the heart to osteocytes, adipocytes, etc. This obstacle may be solved by prior in vitro induction of MSCs toward cardiomyocytes. This study aims to investigate the potential of human adipose tissue (ad)-derived MSCs to differentiate in vitro into cardiomyocytes using angiotensin II in combination with the demethylating agent 5-azacytidine (AZA). Ad biopsy samples were collected; MSCs were isolated, and passage 3 cells were stimulated with AZA and angiotensin II for 3 weeks. Expression of cardiac markers was assessed by immunohistochemistry and by reverse transcription polymerase chain reaction. Angiotensin II and AZA were not able to induce differentiation of human ad-MSCs into cardiomyocytes. They failed to promote expression of the cardiac-specific genes, and the induction of cardiac-specific proteins were not detected by immunohistochemistry except for alpha actin. Thus, conditioned treatment is not sufficient for ad-MSCs differentiation in vitro to cardiomyocytes, and thus there are other essential factors in the cardiac niche affecting differentiation in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antonitsis P, Ioannidou-Papagiannaki E, Kaidoglou A, Papakonstantinou C (2007) In vitro cardiomyogenic differentiation of adult human bone marrow mesenchymal stem cells, the role of 5-azacytidine. Interac Cardiovas Thoracic Surg 6:593–397

    Article  Google Scholar 

  • Balana B, Nicoletti C, Zahanich I, Graf EM, Christ T, Boxberger S, Ravens U (2006) Azacytidine induces changes in electrophysiological properties of human mesenchymal stem cells. Cell Res 16:949–960

    Article  CAS  PubMed  Google Scholar 

  • Behfar A, Yamada S, Crespo-Diaz R, Nesbitt JJ, Rowe LA, Perez-Terzic C, Gaussin V, Homsy C, Bartunek J, Terzic A (2010) Guided cardiopoiesis enhances therapeutic benefit of bone marrow human mesenchymal stem cells in chronic myocardial infarction. J Am Coll Cardiol 56:721–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burlacu A (2006) Can 5 azacytidine convert the adult stem cells into cardiomyocytes? A brief overview. Arch Physiol Biochem 112:260–264

    Article  CAS  PubMed  Google Scholar 

  • Carvalho PH, Daibert AP, Monteiro BS, Okano BS, Carvalho JL, Cunha DN, Favarato LS, Pereira VG, Augusto LE, Del Carlo RJ (2013) Differentiation of adipose tissue-derived mesenchymal stem cells into cardiomyocytes. Arq Bras Cardiol 100(1):82–89

    Article  CAS  PubMed  Google Scholar 

  • Cerny J and Quesenberry PJ (2004) Chromatin remodeling and stem cell theory of relativity. J. Cell Physiol. (201) 1–16.

  • Choi YS, Dusting GJ, Stubbs S, Arunothayaraj S, Han XL, Collas P, Morrison WA, Dilley RJ (2010) Differentiation of human adipose-derived stem cells into beating cardiomyocytes. J Cell Mol Med 14(4):878–889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Furfaro EM, Gaballa MA (2007) Do adult stem cells ameliorate the damaged myocardium? Human cord blood as a potential source of stem cells. Curr Vasc Pharmacol 5:27–44

    Article  CAS  PubMed  Google Scholar 

  • Gallo MP, Ramella R, Alloatti G, Penna C, Pagliaro P, Marcantoni A, Bonafe F, Losano G, Levi R (2007) Limited plasticity of mesenchymal stem cells cocultured with adult cardiomyocytes. J Cell Biochem 100:86–99

    Article  CAS  PubMed  Google Scholar 

  • Herrero C, Pérez-Simón JA (2010) Immunomodulatory effect of mesenchymal stem cells. Braz J Med Biol Res 43(5):425–430

    Article  CAS  PubMed  Google Scholar 

  • Konieczny SF, Emerson CP (1984) 5 azacytidine induction of stable mesodermal stem cell lineages from 10 T1/2 cells: evidence for regulatiry genes controlling determination. Cell 38:791–800

    Article  CAS  PubMed  Google Scholar 

  • Malgieri A, Kantzari E, Patrizi M, Gambardella S (2010) Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art. Int J Clin Exp Med 3(4):248–269

    PubMed Central  PubMed  Google Scholar 

  • Martin-Rendon E, Sweeney D, Lu F, Girdlestone J, Navarrete C, Watt SM (2008) 5-Azacytidine treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sanguinis 95:137–148

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi S, Nagaya N (2007) Prepare cells to repair the heart: mesenchymal stem cells for the treatment of heart failure. Am J Nephrol 27:301–307

    Article  PubMed  Google Scholar 

  • Pijnappels DA, Schalij MJ, Ramkisoensing AA, van Tuyn J, de Vries AA, van der Laarse A, Ypey DL, Atsma DE (2008) Forced alignment of mesenchymal stem cells undergoing cardiomyogenic differentiation affects functional integration with cardiomyocyte cultures, Circ Res. (103)167–176.

  • Planat-Bénard V, Menard C, André M, Puceat M, Perez A, Garcia-Verdugo JM, Pénicaud L, Casteilla L (2004) Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res (94) 223–229.

  • Potdar PD and Prasannan P (2013) Differentiation of human dermal mesenchymal stem cells into cardiomyocytes by treatment with 5-azacytidine: concept for regenerative therapy in myocardial infarction. ISRN Stem Cells Volume 2013, Article ID 687282, 9 pages http://dx.doi.org/10.1155/2013/687282.

  • Ramkisoensing AA, Pijnappels DA, Askar SFA, Passier R, Swildens J et al (2011) Human embryonic and fetal mesenchymal stem cells differentiate toward three different cardiac lineages in contrast to their adult counterparts. PLoS ONE 6(9):e24164. doi:10.1371/journal.pone.0024164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raynaud CM, Maleki M, Lis R, Ahmed B, Al-Azwani I, Malek J, Safadi FF, Rafii A (2012) Comprehensive characterization of mesenchymal stem cells from human placenta and fetal membrane and their response to osteoactivin stimulation. Stem Cells Int. Article ID 658356, doi:10.1155/2012/658356

  • Rosca AM and Burkacu A (2011) Effect of 5 azacytidine: evidence for alteration of the multipotent ability of mesenchymal stem cells. Stem Cells and Development (20) number 7

  • Rose RA, Jiang H, Wang X, Helke S, Tsoporis JN, Gong N, Keating SC, Parker TG, Backx PH, Keating A (2008) Bone marrow derived mesenchymal stem cells express cardiac specific markers, retain the stromal phenotype, and do not become functional cardiomyocyes in vitro. Stem Cells 26:2884–2892

    Article  CAS  PubMed  Google Scholar 

  • Roura S, Farré J, Hove-Madsen L, Prat-Vidal C, Soler-Botija C, Gálvez-Montón C, Vilalta M, Bayes-Genis A (2010) Exposure to cardiomyogenic stimuli fails to transdifferentiate human umbilical cord blood derived mesenchymal stem cells. Basic Res Cardiol 105:419–430

    Article  PubMed  Google Scholar 

  • Soejitno A, Wihandani DM, Tuty Kuswardhani RA (2010) Clinical applications of stem cell therapy for regenerating the heart. Acta Med Indones-Indones J Intern Med (42) number4

  • Taubman MB (2003) Angiotensin II: a vasoactive hormone with ever-increasing biological roles. Circ Res.92:9–11

  • Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98

    Article  PubMed  Google Scholar 

  • Tomita S, Li RK, Weisel RD (1999) Autologous transplantation of bone marrow cells improve damaged heart function. Circulation 100(19):247–256

    Google Scholar 

  • Xing Y, Lv A, Wang L, Yan X (2012) The combination of angiotensin II and 5-azacytidine promotes cardiomyocyte differentiation of rat bone marrow mesenchymal stem cells. Mol Cell Biochem (360) 279–287

  • Xu W, Zhang X, Qian H, Zhu W, Sun X, Hu J, Zhou H, Chen Y (2004) Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Exp Biol Med 229:623–631

    CAS  Google Scholar 

  • Zhang Y, Chu Y, Shen W, Dou Z (2009) Effect of 5-azacytidine induction duration on differentiation of human first—trimester fetal mesenchymal stem cells towards cardiomyocyte-like cells. Interact Cardiovasc Thorac Surg 9:943–946

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by FP7 REGPOT project no. 245691. We thank Miss Nihal ElSayed for molecular techniques assistance and Miss Alshaimaa Ibrahim for immunohistochemistry assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabab El Hawary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaafar, T., Shawky, S., Attia, W. et al. The role of angiotensin II in cardiomyogenic differentiation of human adipose tissue-derived mesenchymal stem cells. Comp Clin Pathol 24, 879–885 (2015). https://doi.org/10.1007/s00580-014-2001-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-014-2001-z

Keywords

Navigation