Skip to main content
Log in

Analytical Solutions to the Cylindrically Symmetric Compressible Navier–Stokes Equations with Density-Dependent Viscosity and Vacuum Free Boundary

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

In this paper, we investigate the analytical solutions to the cylindrically symmetric compressible Navier–Stokes equations with density-dependent viscosity and vacuum free boundary. The shear and bulk viscosity coefficients are assumed to be a power function of the density and a positive constant, respectively, and the free boundary is assumed to move in the radial direction with the radial velocity, which will affect the angular velocity but does not affect the axial velocity. We obtain a global analytical solution by using some ansatzs and reducing the original partial differential equations into a nonlinear ordinary differential equation about the free boundary. The free boundary is shown to grow at least sub-linearly in time and not more than linearly in time for the analytical solution by using a new averaged quantity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Chen, P., Zhang, T.: A vacuum problem for multidimensional compressible Navier–Stokes equations with degenerate viscosity coefficients. Commun. Pure Appl. Anal. 7, 987–1016 (2008)

    Article  MathSciNet  Google Scholar 

  • Dong, J.W., Zhang, L.T.: Analytical solutions to the 1D compressible isothermal Navier–Stokes equations with density-dependent viscosity. J. Math. Phys. 62, 121503 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  • Frid, H., Shelukhin, V.: Boundary layers for the Navier–Stokes equations of compressible fluids. Commun. Math. Phys. 208, 309–330 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  • Guo, Z.H., Xin, Z.P.: Analytical solutions to the compressible Navier–Stokes equations with density-dependent viscosity coefficients and free boundaries. J. Differ. Equ. 253, 1–19 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  • Guo, Z.H., Li, H.L., Xin, Z.P.: Lagrange structure and dynamical for spherically symmetric compressible Navier–Stokes equations. Commun. Math. Phys. 309, 371–412 (2012)

    Article  ADS  Google Scholar 

  • Jiang, S., Zhang, J.: Boundary layers for the Navier–Stokes equations of compressible heat-conducting flows with cylindrical symmetry. SIAM J. Math. Anal. 41, 237–268 (2009)

    Article  MathSciNet  Google Scholar 

  • Li, H.L., Zhang, X.W.: Global strong solutions to radial symmetric compressible Navier–Stokes equations with free boundary. J. Differ. Equ. 261, 6341–6367 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  • Liang, Z.L., Shi, X.D.: Blowup of solutions for the compressible Navier–Stokes equations with density-dependent viscosity coefficients. Nonlinear Anal. 93, 155–161 (2013)

    Article  MathSciNet  Google Scholar 

  • Lions, P.L.: Mathematical Topics in Fluid Mechanics. Vol. 2. (The Clarendon Press, Oxford University Press, 1998)

  • Liu, T.P., Xin, Z.P., Yang, T.: Vacuum states for compressible flow. Discrete Contin. Dyn. Syst. 4, 1–32 (1998)

    Article  MathSciNet  Google Scholar 

  • Qin, X., Yang, T., Yao, Z., Zhou, W.: Vanishing shear viscosity and boundary layer for the Navier–Stokes equations with cylindrical symmetry. Arch. Ration. Mech. Anal. 216, 1049–1086 (2015)

    Article  MathSciNet  Google Scholar 

  • Wang, M., Li, Z.L., Li, W.: Analytical solutions to the 3-D compressible Navier–Stokes equations with free boundaries. Boundary Value Probl. (2015). https://doi.org/10.1186/s13661-015-0353-1

    Article  MathSciNet  Google Scholar 

  • Wang, Y.H., Wen, H.Y., Zhang, W.H.: Vanishing shear viscosity limit for the Navier–Stokes equations with cylindrical symmetry: boundary layer and optimal convergence rate. SIAM J. Math. Anal. (2023). https://doi.org/10.1137/22M1509321

    Article  MathSciNet  Google Scholar 

  • Wen, H.Y., Yang, T., Zhao, X., Zhu, C.J.: Optimal convergence rate of the vanishing shear viscosity limit for compressible Navier–Stokes equations with cylindrical symmetry. J. Math. Pures Appl. 146, 99–126 (2021)

    Article  MathSciNet  Google Scholar 

  • Yao, L., Zhang, T., Zhu, C.J.: Boundary layers for compressible Navier–Stokes equations with density-dependent viscosity and cylindrical symmetry. Ann. Inst. Henri Poincare Anal. Non Lineaire 28, 677709 (2011)

    Article  MathSciNet  Google Scholar 

  • Ye, X., Zhang, J.: Boundary-layer phenomena for the cylindrically symmetric Navier–Stokes equations of compressible heat-conducting fluids with large data at vanishing shear viscosity. Nonlinearity 29, 2395–2416 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  • Yeung, L.H., Yuen, M.W.: Analytical solutions to the Navier–Stokes equations with density-dependent viscosity and with pressure. J. Math. Phys. 50, 083101 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  • Yuen, M.W.: Analytical Solutions to the Navier–Stokes Equations. J. Math. Phys. 49, 113102 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewer for his or her helpful suggestions, which have improved the quality of this paper greatly. This work is supported by the Project of Youth Backbone Teachers of Colleges and Universities in Henan Province (2019GGJS176), the Vital Science Research Foundation of Henan Province Education Department (22A110024, 22A110026), the Scientific Research Team Plan of Zhengzhou University of Aeronautics (23ZHTD01003), the Basic Research Projects of Key Scientific Research Projects Plan in Henan Higher Education Institutions (20zx003) and the Henan Natural Science Foundation (222300420579).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Dong.

Ethics declarations

Conflicts of interest

The authors declare that this work does not have any conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we will give the derivation of system (1.4). In view of

$$\begin{aligned}{} & {} \frac{\partial }{\partial x_{1}}\left( u\frac{x_{1}}{r}-v\frac{x_{2}}{r}\right) +\frac{\partial }{\partial x_{2}}\left( u\frac{x_{2}}{r}+v\frac{x_{1}}{r}\right) +\frac{\partial w}{\partial x_{3}} \nonumber \\{} & {} =u_{r}\frac{x_{1}^{2}}{r^{2}}+u\frac{1}{r}-u\frac{x_{1}^{2}}{r^{3}}-v_{r}\frac{x_{1}x_{2}}{r^{2}}+v\frac{x_{1}x_{2}}{r^{3}}\ \ \ \ \ \ \nonumber \\{} & {} +u_{r}\frac{x_{2}^{2}}{r^{2}}+u\frac{1}{r}-u\frac{x_{2}^{2}}{r^{3}}+v_{r}\frac{x_{1}x_{2}}{r^{2}}-v\frac{x_{1}x_{2}}{r^{3}}\ \nonumber \\{} & {} =u_{r}+\frac{1}{r}u,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{aligned}$$
(A.1)

we get

$$\begin{aligned}{} & {} \textrm{div}(\rho {\textbf{U}})=\nabla \rho \cdot {\textbf{U}}+\rho \textrm{div}{\textbf{U}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \nonumber \\{} & {} =\left( \frac{\partial \rho }{\partial x_{1}},\frac{\partial \rho }{\partial x_{2}},\frac{\partial \rho }{\partial x_{3}}\right) \cdot \left( u\frac{x_{1}}{r}-v\frac{x_{2}}{r},u\frac{x_{2}}{r}+v\frac{x_{1}}{r},w\right) \nonumber \\{} & {} \ \ \ \ \ \ \ \ +\rho \left[ \frac{\partial }{\partial x_{1}}\left( u\frac{x_{1}}{r}-v\frac{x_{2}}{r}\right) +\frac{\partial }{\partial x_{2}}\left( u\frac{x_{2}}{r}+v\frac{x_{1}}{r}\right) +\frac{\partial w}{\partial x_{3}}\right] \nonumber \\{} & {} =(\rho u)_{r}+\frac{1}{r}\rho u.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{aligned}$$
(A.2)

We substitute (A.2) into (1.1) to obtain (1.4)\(_{1}\).

By (1.1), we can rewrite (1.2) as

$$\begin{aligned} \rho ({\textbf{U}}_{t}+{\textbf{U}}\cdot \nabla {\textbf{U}})+\nabla P(\rho )-\textrm{div}(\mu (\nabla {\textbf{U}}+\nabla {\textbf{U}}^{T})) -\nabla (\lambda \textrm{div}{\textbf{U}})={\textbf{0}}. \end{aligned}$$
(A.3)

We calculate \({\textbf{U}}\cdot \nabla {\textbf{U}}\), \(\nabla P(\rho )\), \(\textrm{div}(\mu (\nabla {\textbf{U}}+\nabla {\textbf{U}}^{T}))\) and \(\nabla (\lambda \textrm{div}{\textbf{U}})\) as follows.

$$\begin{aligned}{} & {} {\textbf{U}}\cdot \nabla {\textbf{U}}=(\left( u\frac{x_{1}}{r}-v\frac{x_{2}}{r}\right) \left( u_{r}\frac{x_{1}^{2}}{r^{2}} +u\frac{1}{r}-u\frac{x_{1}^{2}}{r^{3}} -v_{r}\frac{x_{1}x_{2}}{r^{2}}+v\frac{x_{1}x_{2}}{r^{3}}\right) \nonumber \\{} & {} \qquad +\left( u\frac{x_{2}}{r}+v\frac{x_{1}}{r}\right) \left( u_{r}\frac{x_{1}x_{2}}{r^{2}}-u\frac{x_{1}x_{2}}{r^{3}}-v_{r}\frac{x_{2}^{2}}{r^{2}} -v\frac{1}{r}+v\frac{x_{2}^{2}}{r^{3}}\right) , \nonumber \\{} & {} \qquad \left( u\frac{x_{1}}{r}-v\frac{x_{2}}{r}\right) \left( u_{r}\frac{x_{1}x_{2}}{r^{2}}-u\frac{x_{1}x_{2}}{r^{3}}+v_{r}\frac{x_{1}^{2}}{r^{2}} +v\frac{1}{r}-v\frac{x_{1}^{2}}{r^{3}}\right) \nonumber \\{} & {} \qquad +\left( u\frac{x_{2}}{r}+v\frac{x_{1}}{r}\right) \left( u_{r}\frac{x_{2}^{2}}{r^{2}}+u\frac{1}{r}-u\frac{x_{2}^{2}}{r^{3}} +v_{r}\frac{x_{1}x_{2}}{r^{2}}-v\frac{x_{1}x_{2}}{r^{3}}\right) , \nonumber \\{} & {} \qquad \left( u\frac{x_{1}}{r}-v\frac{x_{2}}{r}\right) w_{r}\frac{x_{1}}{r}+\left( u\frac{x_{2}}{r}+v\frac{x_{1}}{r}\right) w_{r}\frac{x_{2}}{r})\ \ \nonumber \\{} & {} \quad =\left( uu_{r}\frac{x_{1}}{r}-uv_{r}\frac{x_{2}}{r}-uv\frac{x_{2}}{r^{2}}-v^{2}\frac{x_{1}}{r^{2}},\ \right. \nonumber \\{} & {} \qquad \left. uu_{r}\frac{x_{2}}{r}+uv_{r}\frac{x_{1}}{r}+uv\frac{x_{1}}{r^{2}}-v^{2}\frac{x_{2}}{r^{2}},uw_{r}\right) ,\ \ \ \end{aligned}$$
(A.4)
$$\begin{aligned}{} & {} \nabla P(\rho )=[P(\rho )]_{r}\left( \frac{x_{1}}{r},\frac{x_{2}}{r},0\right) , \end{aligned}$$
(A.5)

the first component of \(\textrm{div}(\mu (\nabla {\textbf{U}}+\nabla {\textbf{U}}^{T}))\) is

$$\begin{aligned}{} & {} \frac{\partial }{\partial x_{1}}\left[ \mu \left( 2u_{r}\frac{x_{1}^{2}}{r^{2}}+2u\frac{1}{r}-2u\frac{x_{1}^{2}}{r^{3}}-2v_{r}\frac{x_{1}x_{2}}{r^{2}}+2v\frac{x_{1}x_{2}}{r^{3}}\right) \right] \ \nonumber \\{} & {} \qquad +\frac{\partial }{\partial x_{2}}\left[ \mu \left( 2u_{r}\frac{x_{1}x_{2}}{r^{2}}-2u\frac{x_{1}x_{2}}{r^{3}}+v_{r}\frac{x_{1}^{2}-x_{2}^{2}}{r^{2}}+v\frac{x_{2}^{2}-x_{1}^{2}}{r^{3}}\right) \right] +\frac{\partial }{\partial x_{3}}\left( \mu w_{r}\frac{x_{1}}{r}\right) \nonumber \\{} & {} \quad =\mu _{r}\frac{x_{1}}{r}\left( 2u_{r}\frac{x_{1}^{2}}{r^{2}}+2u\frac{1}{r}-2u\frac{x_{1}^{2}}{r^{3}}-2v_{r}\frac{x_{1}x_{2}}{r^{2}}+2v\frac{x_{1}x_{2}}{r^{3}}\right) \nonumber \\{} & {} \qquad +\mu (2u_{rr}\frac{x_{1}^{3}}{r^{3}}+4u_{r}\frac{x_{1}}{r^{2}}-4u_{r}\frac{x_{1}^{3}}{r^{4}}+2u_{r}\frac{x_{1}}{r^{2}}-2u\frac{x_{1}}{r^{3}}-2u_{r}\frac{x_{1}^{3}}{r^{4}}-4u\frac{x_{1}}{r^{3}}\ \nonumber \\{} & {} \qquad +6u\frac{x_{1}^{3}}{r^{5}}-2v_{rr}\frac{x_{1}^{2}x_{2}}{r^{3}}-2v_{r}\frac{x_{2}}{r^{2}}+4v_{r}\frac{x_{1}^{2}x_{2}}{r^{4}}+2v_{r}\frac{x_{1}^{2}x_{2}}{r^{4}}+2v\frac{x_{2}}{r^{3}}-6v\frac{x_{1}^{2}x_{2}}{r^{5}})\nonumber \\{} & {} \qquad +\mu _{r}\frac{x_{2}}{r}\left( 2u_{r}\frac{x_{1}x_{2}}{r^{2}}-2u\frac{x_{1}x_{2}}{r^{3}}+v_{r}\frac{x_{1}^{2}-x_{2}^{2}}{r^{2}}+v\frac{x_{2}^{2}-x_{1}^{2}}{r^{3}}\right) \ \nonumber \\{} & {} \qquad +\mu (2u_{rr}\frac{x_{1}x_{2}^{2}}{r^{3}}+2u_{r}\frac{x_{1}}{r^{2}}-4u_{r}\frac{x_{1}x_{2}^{2}}{r^{4}}-2u_{r} \frac{x_{1}x_{2}^{2}}{r^{4}}\ \nonumber \\{} & {} \qquad -2u\frac{x_{1}}{r^{3}}+6u\frac{x_{1}x_{2}^{2}}{r^{5}}+v_{rr}\frac{(x_{1}^{2}-x_{2}^{2})x_{2}}{r^{3}}-2v_{r}\frac{x_{2}}{r^{2}}\ \nonumber \\{} & {} \qquad -2v_{r}\frac{(x_{1}^{2}-x_{2}^{2})x_{2}}{r^{4}}+v_{r}\frac{(x_{2}^{2}-x_{1}^{2})x_{2}}{r^{4}}+2v\frac{x_{2}}{r^{3}} +3v\frac{(x_{1}^{2}-x_{2}^{2})x_{2}}{r^{5}})\nonumber \\{} & {} \quad =\mu _{r}(2u_{r}\frac{x_{1}}{r}-v_{r}\frac{x_{2}}{r}+v\frac{x_{2}}{r^{2}}) +\mu (2u_{rr}\frac{x_{1}}{r}+2u_{r}\frac{x_{1}}{r^{2}}-2u\frac{x_{1}}{r^{3}}-v_{rr}\frac{x_{2}}{r}-v_{r}\frac{x_{2}}{r^{2}}+v\frac{x_{2}}{r^{3}}),\nonumber \\ \end{aligned}$$
(A.6)

the second component of \(\textrm{div}(\mu (\nabla {\textbf{U}}+\nabla {\textbf{U}}^{T}))\) is

$$\begin{aligned}{} & {} \frac{\partial }{\partial x_{1}}\left[ \mu \left( 2u_{r}\frac{x_{1}x_{2}}{r^{2}}-2u\frac{x_{1}x_{2}}{r^{3}}+v_{r}\frac{x_{1}^{2}-x_{2}^{2}}{r^{2}}+v\frac{x_{2}^{2}-x_{1}^{2}}{r^{3}}\right) \right] \nonumber \\{} & {} \qquad +\frac{\partial }{\partial x_{2}}\left[ \mu \left( 2u_{r}\frac{x_{2}^{2}}{r^{2}}+2u\frac{1}{r}-2u\frac{x_{2}^{2}}{r^{3}}+2v_{r}\frac{x_{1}x_{2}}{r^{2}}-2v\frac{x_{1}x_{2}}{r^{3}}\right) \right] \ \nonumber \\{} & {} \quad =\mu _{r}\frac{x_{1}}{r}\left( 2u_{r}\frac{x_{1}x_{2}}{r^{2}}-2u\frac{x_{1}x_{2}}{r^{3}}+v_{r}\frac{x_{1}^{2}-x_{2}^{2}}{r^{2}}+v\frac{x_{2}^{2}-x_{1}^{2}}{r^{3}}\right) \ \nonumber \\{} & {} \qquad +\mu (2u_{rr}\frac{x_{1}^{2}x_{2}}{r^{3}}+2u_{r}\frac{x_{2}}{r^{2}}-4u_{r}\frac{x_{1}^{2}x_{2}}{r^{4}}-2u_{r}\frac{x_{1}^{2}x_{2}}{r^{4}}-2u\frac{x_{2}}{r^{3}}+6u\frac{x_{1}^{2}x_{2}}{r^{5}} +v_{rr}\frac{(x_{1}^{2}-x_{2}^{2})x_{1}}{r^{3}} \nonumber \\{} & {} \qquad +2v_{r}\frac{x_{1}}{r^{2}}-2v_{r}\frac{(x_{1}^{2}-x_{2}^{2})x_{1}}{r^{4}}+v_{r}\frac{(x_{2}^{2}-x_{1}^{2})x_{1}}{r^{4}}-2v\frac{x_{1}}{r^{3}} +3v\frac{(x_{1}^{2}-x_{2}^{2})x_{1}}{r^{5}}) \nonumber \\{} & {} \qquad +\mu _{r}\frac{x_{2}}{r}\left( 2u_{r}\frac{x_{2}^{2}}{r^{2}}+2u\frac{1}{r}-2u\frac{x_{2}^{2}}{r^{3}}+2v_{r}\frac{x_{1}x_{2}}{r^{2}}-2v\frac{x_{1}x_{2}}{r^{3}}\right) \ \nonumber \\{} & {} \qquad +\mu (2u_{rr}\frac{x_{2}^{3}}{r^{3}}+4u_{r}\frac{x_{2}}{r^{2}}-4u_{r}\frac{x_{2}^{3}}{r^{4}}+2u_{r}\frac{x_{2}}{r^{2}}-2u\frac{x_{2}}{r^{3}}-2u_{r}\frac{x_{2}^{3}}{r^{4}}-4u\frac{x_{2}}{r^{3}}\ \nonumber \\{} & {} \qquad +6u\frac{x_{2}^{3}}{r^{5}}+2v_{rr}\frac{x_{1}x_{2}^{2}}{r^{3}}+2v_{r}\frac{x_{1}}{r^{2}}-4v_{r}\frac{x_{1}x_{2}^{2}}{r^{4}}-2v_{r}\frac{x_{1}x_{2}^{2}}{r^{4}}-2v\frac{x_{1}}{r^{3}}+6v\frac{x_{1}x_{2}^{2}}{r^{5}})\ \nonumber \\{} & {} \quad =\mu _{r}(2u_{r}\frac{x_{2}}{r}+v_{r}\frac{x_{1}}{r}-v\frac{x_{1}}{r^{2}}) +\mu (2u_{rr}\frac{x_{2}}{r}+2u_{r}\frac{x_{2}}{r^{2}}-2u\frac{x_{2}}{r^{3}}+v_{rr}\frac{x_{1}}{r}+v_{r}\frac{x_{1}}{r^{2}}-v\frac{x_{1}}{r^{3}}),\nonumber \\ \end{aligned}$$
(A.7)

the third component of \(\textrm{div}(\mu (\nabla {\textbf{U}}+\nabla {\textbf{U}}^{T}))\) is

$$\begin{aligned}{} & {} \frac{\partial }{\partial x_{1}}(\mu w_{r}\frac{x_{1}}{r})+\frac{\partial }{\partial x_{2}}(\mu w_{r}\frac{x_{2}}{r})=(\mu w_{r})_{r}\frac{x_{1}^{2}}{r^{2}}\nonumber \\{} & {} \qquad +\mu w_{r}\left( \frac{1}{r}-\frac{x_{1}^{2}}{r^{3}}\right) +(\mu w_{r})_{r}\frac{x_{2}^{2}}{r^{2}}+\mu w_{r}\left( \frac{1}{r}-\frac{x_{2}^{2}}{r^{3}}\right) \nonumber \\{} & {} \quad =(\mu w_{r})_{r}+\mu w_{r}\frac{1}{r}, \end{aligned}$$
(A.8)
$$\begin{aligned}{} & {} \nabla (\lambda \textrm{div}{\textbf{U}})=\lambda \left( (u_{r}+\frac{u}{r})_{r}\frac{x_{1}}{r},(u_{r}+\frac{u}{r})_{r}\frac{x_{2}}{r},0\right) . \end{aligned}$$
(A.9)

Combining (A.4)–(A.9), we obtain the three components of (1.2) are

$$\begin{aligned}{} & {} \rho \left( u_{t}\frac{x_{1}}{r}-v_{t}\frac{x_{2}}{r}+uu_{r}\frac{x_{1}}{r}-uv_{r}\frac{x_{2}}{r} -uv\frac{x_{2}}{r^{2}}-v^{2}\frac{x_{1}}{r^{2}}\right) +[P(\rho )]_{r}\frac{x_{1}}{r}\nonumber \\{} & {} \qquad -\mu _{r}\left( 2u_{r}\frac{x_{1}}{r} -v_{r}\frac{x_{2}}{r}+v\frac{x_{2}}{r^{2}}\right) \nonumber \\{} & {} \qquad -\mu \left( 2u_{rr}\frac{x_{1}}{r}+2u_{r}\frac{x_{1}}{r^{2}}-2u\frac{x_{1}}{r^{3}}-v_{rr}\frac{x_{2}}{r}-v_{r}\frac{x_{2}}{r^{2}}+v\frac{x_{2}}{r^{3}}\right) \nonumber \\{} & {} \qquad -\lambda \left( u_{r}+\frac{u}{r}\right) _{r}\frac{x_{1}}{r}=0,\ \end{aligned}$$
(A.10)
$$\begin{aligned}{} & {} \rho \left( u_{t}\frac{x_{2}}{r}+v_{t}\frac{x_{1}}{r}+uu_{r}\frac{x_{2}}{r}+uv_{r}\frac{x_{1}}{r}+uv\frac{x_{1}}{r^{2}}-v^{2}\frac{x_{2}}{r^{2}}\right) \nonumber \\{} & {} \qquad +[P(\rho )]_{r}\frac{x_{2}}{r}-\mu _{r}\left( 2u_{r}\frac{x_{2}}{r} +v_{r}\frac{x_{1}}{r}-v\frac{x_{1}}{r^{2}}\right) \nonumber \\{} & {} \qquad -\mu (2u_{rr}\frac{x_{2}}{r}+2u_{r}\frac{x_{2}}{r^{2}}-2u\frac{x_{2}}{r^{3}}+v_{rr}\frac{x_{1}}{r}+v_{r}\frac{x_{1}}{r^{2}}-v\frac{x_{1}}{r^{3}})-\lambda \left( u_{r}+\frac{u}{r}\right) _{r}\frac{x_{2}}{r}=0, \end{aligned}$$
(A.11)
$$\begin{aligned}{} & {} \rho (w_{t}+uw_{r})-(\mu w_{r})_{r}-\mu w_{r}\frac{1}{r}=0, \end{aligned}$$
(A.12)

respectively. By (A.10) and (A.11), we know that

$$\begin{aligned} \left\{ \begin{array}{ll} \left[ \rho \left( u_{t}+uu_{r}-\frac{v^{2}}{r}\right) +P_{r}-\left( 2\mu _{r}u_{r}+2\mu u_{rr}+2\mu u_{r}\frac{1}{r}-2\mu u\frac{1}{r^{2}}\right) -\lambda \left( u_{r}+\frac{u}{r}\right) _{r}\right] \frac{x_{1}}{r}\\ -\left[ \rho \left( v_{t}+uv_{r}+\frac{uv}{r}\right) -\left( \mu _{r}v_{r}-\mu _{r}v\frac{1}{r}+\mu v_{rr}+\mu v_{r}\frac{1}{r}-\mu \frac{v}{r^{2}}\right) \right] \frac{x_{2}}{r}=0,\\ \left[ \rho \left( u_{t}+uu_{r}-\frac{v^{2}}{r}\right) +P_{r}-\left( 2\mu _{r}u_{r}+2\mu u_{rr}+2\mu u_{r}\frac{1}{r}-2\mu u\frac{1}{r^{2}}\right) -\lambda \left( u_{r}+\frac{u}{r}\right) _{r}\right] \frac{x_{2}}{r}\\ +\left[ \rho \left( v_{t}+uv_{r}+\frac{uv}{r}\right) -\left( \mu _{r}v_{r}-\mu _{r}v\frac{1}{r}+\mu v_{rr}+\mu v_{r}\frac{1}{r}-\mu \frac{v}{r^{2}}\right) \right] \frac{x_{1}}{r}=0,\end{array}\right. \nonumber \\ \end{aligned}$$
(A.13)

which leads to (1.4)\(_{2}\) and (1.4)\(_{3}\) by the Crammer rule.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Cui, H. Analytical Solutions to the Cylindrically Symmetric Compressible Navier–Stokes Equations with Density-Dependent Viscosity and Vacuum Free Boundary. Bull Braz Math Soc, New Series 55, 8 (2024). https://doi.org/10.1007/s00574-023-00382-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00574-023-00382-4

Keywords

Mathematics Subject Classification

Navigation