Skip to main content
Log in

On a hyperbolic conservation law of electron transport in solid materials for electron probe microanalysis

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

The prediction of X-ray intensities based on the distribution of electrons throughout solid materials is essential to solve the inverse problem of quantifying the composition of materials in electron probe microanalysis (EPMA) [3]. We present a hyperbolic conservation law for electron transport in solid materials and investigate its validity under conditions typical for EPMA experiments. The conservation law is based on the time-stationary Boltzmann equation for binary electron-atom scattering. We model the energy loss of the electrons with a continuous slowing-down approximation. A first order moment approximation with respect to the angular variable is discussed. We propose to use a minimum entropy closure to derive a system of hyperbolic conservation laws, known as the M1 model [11]. A finite volume scheme for the numerical solution of the resulting equations is presented. Important numerical aspects of the scheme are discussed, such as bounds for the finite propagation speeds, as well as difficulties arising fromspatial discontinuities in thematerial coefficients and the scaling of the characteristic velocities with the stopping power of the electrons.We compare the accuracy and performance of the numerical solution of the hyperbolic conservation law to Monte Carlo simulations. The results indicate a reasonable accuracy of the proposed method and showthat compared to the MonteCarlo simulation the finite volume scheme is computationally less expensive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. F. Bastin and H. J. M. Heijligers. Quantitative electron probe microanalysis of ultra-light elements (boron-oxygen). In: K. F. J. Heinrich and D. E. Newbury (editors), Electron Probe Quantitation, pages 145–161. Plenum Press (1991).

    Chapter  Google Scholar 

  2. H. Bethe. Zur theorie des durchgangs schneller korpuskularstrahlen durch materie. Ann. Phys., 5 (1930), 325.

    Article  MATH  Google Scholar 

  3. D. B. Brown and R. E. Ogilvie. An Electron Transport Model for the Prediction of X-Ray Production and Electron Backscattering in ElectronMicroanalysis. Journal of Applied Physics, 37(12) (1966), 4429.

    Article  Google Scholar 

  4. D. B. Brown, D. B. Wittry and K. D. F. Prediction of X-Ray Production and Electron Scattering in Electron-Probe Analysis Using a Transport Equation. Journal of Applied Physics, 40(4) (1969), 1627.

    Article  Google Scholar 

  5. T. A. Brunner and J. P. Holloway. One-dimensional Riemann solvers and the maximum entropy closure. Journal of Quantitative Spectroscopy & Radiative Transfer, 69 (2001), 543–566.

    Article  Google Scholar 

  6. B. Dubroca and J. Feugeas. Theoretical and numerical study on a moment closure hierarchy for the radiative transfer equation. Comptes Rendus de l’Academie des Sciences Series I Mathematics, 329(10) (1999), 915–920.

    MathSciNet  MATH  Google Scholar 

  7. R. Duclous, B. Dubroca and M. Frank. A deterministic partial differential equation model for dose calculation in electron radiotherapy. Physics inMedicine and Biology, 55 (2010), 3843–3857.

    Article  Google Scholar 

  8. D. J. Fathers and P. Rez. A Transport Equation Theory of Electron Scattering, pages 193–208. Scanning Electron Microscopy, (1984).

    Google Scholar 

  9. E. T. Jaynes. Gibbs vsBoltzmann entropies. American Journal of Physics, 33 (1965), 391.

    Article  MATH  Google Scholar 

  10. D. C. Joy and S. Luo. An empirical stopping power relationship for low-energy electrons. Scanning, 11(4) (1989), 176–180.

    Article  Google Scholar 

  11. E. W. Larsen, M. M. Miften, B. A. Fraass and I. A. D. Bruinvis. Electron dose calculations using the Method of Moments. Medical Physics, 24 (1997), 111–116.

    Article  Google Scholar 

  12. N. Mevenkamp. Inverse Modeling in Electron Probe Microanalysis based on Deterministic Transport Equations. Master’s thesis, RWTH Aachen University (2013).

    Google Scholar 

  13. A. A. Oberai, N. H. Gokhale and G. R. Feijóo. Solution of inverse problems in elasticity imaging using the adjoint method. Inverse Problems, 19(2) (2003), 297.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. L. Pouchou. X-Ray microanalysis of stratified specimens. Analytica Chimica Acta, 283(1) (1993), 81–97.

    Article  Google Scholar 

  15. J.-L. Pouchou and F. Pichoir. Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In: K. F. J. Heinrich and D. E. Newbury (Editors), Electron Probe Quantitation, pages 31–75. Plenum Press (1991).

    Chapter  Google Scholar 

  16. L. Reimer. Scanning Electron Microscopy: Physics of Image Formation and Micro. Springer (1998).

    Book  Google Scholar 

  17. N. W. M. Ritchie. A new monte carlo application for complex sample geometries. Surface and Interface Analysis, 37(11) (2005), 1006–1011.

    Article  Google Scholar 

  18. N. W. M. Ritchie. Spectrum SimulationinDTSA-II. Microscopy andMicroanalysis, 15(5) (2009), 454.

    Article  MathSciNet  Google Scholar 

  19. F. Salvat, J. M. Fernández-Varea and J. Sempau. PENELOPE-2006: A Code System for Monte Carlo Simulation of Electron and Photon Transport. In Workshop Proceedings, 4 (2006), page 7.

    Google Scholar 

  20. E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer (2009).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Mevenkamp.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mevenkamp, N., Pinard, P.T., Richter, S. et al. On a hyperbolic conservation law of electron transport in solid materials for electron probe microanalysis. Bull Braz Math Soc, New Series 47, 575–588 (2016). https://doi.org/10.1007/s00574-016-0170-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-016-0170-x

Keywords

Mathematical subject classification

Navigation