Skip to main content
Log in

Fully well-balanced, positive and simple approximate Riemann solver for shallow water equations

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

The present work is focused on the numerical approximation of the shallow water equations. When studying this problem, one faces at least two important issues, namely the ability of the scheme to preserve the positiveness of the water depth, along with the ability to capture the stationary states.We propose here aGodunov-typemethod that fully satisfies the previous conditions, meaning that the method is in particular able to preserve the steady states with non-zero velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Audusse, F. Bouchut, M.O. Bristeau, R. Klein and B. Perthame. A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comp., 25 (2004), 2050–2065.

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Audusse, C. Chalons and P. Ung. A very simple well-balanced positive and entropy-satisfying scheme for the shallow-water equations. Commun. Math. Sci., 13(5) (2015), 1317–1332.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Bermudez and M.E. Vazquez-Cendon. Upwind Methods for Hyperbolic Conservation Laws with Source Terms. Comp. & Fluids, 23 (1994), 1049–1071.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Berthon and C. Chalons. A fully well-balanced, positive and entropy-satisfying Godunov-type method for the Shallow-Water Equations, to appear in Math. of Comp. (2015).

    MATH  Google Scholar 

  5. C. Berthon and F. Foucher. Efficient wellbalanced hydrostatic upwind schemes for shallowwater equations. J. Comput. Phys., 231 (2012), 4993–5015.

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Bouchut. Non-linear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. Frontiers in Mathematics, Birkhauser (2004).

    Book  MATH  Google Scholar 

  7. F. Bouchut and T. Morales. A subsonic-well-balanced reconstruction scheme for shallow water flows. Siam J. Numer. Anal., 48(5) (2010), 1733–1758.

    Article  MathSciNet  MATH  Google Scholar 

  8. M.J. Castro, A. Pardo and C. Parés. Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique. Mathematical Models and Methods in Applied Sciences, 17 (2007), 2065–2113.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Chalons, F. Coquel, E. Godlewski, P-A Raviart and N. Seguin. Godunov-type schemes for hyperbolic systems with parameter dependent source. The case of Euler system with friction. Math. Models Methods Appl. Sci., 20(11) (2010).

    Google Scholar 

  10. A. Chinnayya, A.-Y. Le Roux and N. Seguin. A well-balanced numerical scheme for the approximation of the shallow-water equations with topography: the resonance phenomenon. International Journal on Finite Volume (electronic), 1(1) (2004), 1–33.

    MathSciNet  Google Scholar 

  11. G. Gallice. Solveurs simples positifs et entropiques pour les systèmes hyperboliques avec terme source. C. R. Math. Acad. Sci. Paris, 334(8) (2002), 713–716.

    Article  MathSciNet  Google Scholar 

  12. G. Gallice. Positive and entropy stable Godunov-type schemes for gas dynamics and MHD equations in Lagrangian or Eulerian coordinates. Numer. Math., 94(4) (2003), 673–713.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. García-Navarro, P. Brufau, J. Burguete and J. Murillo. The Shallow-Water equations: An example ofHyperbolic System, inMonografías de laReal Academia de Ciencias de Zaragoza (2008).

    MATH  Google Scholar 

  14. L. Gosse. A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms. Comput.Math. Appl., 39 (2000), 135–159.

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Gosse. Computing qualitatively correct approximations of balance laws. Exponential-fit,well-balanced and asymptotic-preserving. SEMASIMAI Springer Series, 2 (2013).

  16. J.M. Greenberg and A.Y. Leroux. A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal., 33 (1996), 1–16.

    Article  MathSciNet  Google Scholar 

  17. A. Harten, P. Lax and B. Van Leer. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev., 25 (1983), 35–61.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Jin. A steady-state capturing method for hyperbolic systems with geometrical source terms. Math. Model. Numer. Anal., 35 (2001), 631–645.

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Perthame and C. Simeoni. A kinetic scheme for the Saint-Venant system with source term. Calcolo, Springer-Verlag, 38 (2001), 201–231.

    MathSciNet  MATH  Google Scholar 

  20. Y. Xing. Exactly well-balanced discontinuous Galerkin methods for the shallow water equations with moving water equilibrium. J. Comput. Phys., 257 (2014), 536–553.

    Article  MathSciNet  Google Scholar 

  21. Y. Xing and C.-W. Shu. High order well-balanced finite volume WENO schemes and discontinuousGalerkin methods for a class of hyperbolic systems with source terms. J. Comput. Phys., 214 (2006), 567–598.

    Article  MathSciNet  MATH  Google Scholar 

  22. Y. Xing, C.-W. Shu and S. Noelle. On the advantage of well-balanced schemes for moving-water equilibria of the shallow water equations. J. Sci. Comput., 48 (2011), 339–349.

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. Xing, X. Zhang and C.-W. Shu. Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Resour., 33 (2010), 1476–1493.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Chalons.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berthon, C., Chalons, C., Cornet, S. et al. Fully well-balanced, positive and simple approximate Riemann solver for shallow water equations. Bull Braz Math Soc, New Series 47, 117–130 (2016). https://doi.org/10.1007/s00574-016-0126-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-016-0126-1

Keywords

Mathematical subject classification

Navigation