Skip to main content
Log in

Structural characterization and molecular identification of arbuscular mycorrhiza morphotypes of Alzatea verticillata (Alzateaceae), a prominent tree in the tropical mountain rain forest of South Ecuador

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The vast majority of the highly diverse trees in the tropical mountain rain forest of South Ecuador form arbuscular mycorrhizas, and previous molecular investigations revealed a high diversity of fungi. In this study, we present a first trial to link fungal DNA-sequences with defined morphotypes characterized on the basis of partly new mycelial features obtained from field material of one tree species, Alzatea verticillata. Fine roots were halved lengthwise to study the mycelium anatomy on one half and to obtain fungal nuclear rDNA coding for the small subunit rRNA of Glomeromycota from the other half. Light microscopy revealed conspicuously large amounts of mycelium attaching to the surface of the rootlets. The mycelium formed fine- or large-branched appressoria-like plates, vesicles of regular or irregular shape, and very fine, multibranched structures ensheathed by septate hyphae. These previously undescribed features of the supraradical mycelia combined with intraradical mycelium structures were used for distinguishing of four main morphogroups and subordinate 14 morphotypes. DNA sequences of Glomus group A, Acaulospora and Gigaspora, were obtained and linked to three morphogroups. Two sequence types within Glomus group A could be tentatively associated to subordinate morphotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figs. 1, 2 and 3 Fig. 1 Fig. 2 Fig. 3
Figs. 4, 5 and 6 Figs. 4a and b Fig. 5 Fig. 6
Figs. 7, 8 and 9 Fig. 7 Fig. 8 Fig. 9
Figs. 10, 11 and 12 Fig. 10 Fig. 11 Fig. 12
Figs. 13 and 14 Fig. 13a and b Fig. 14
Figs. 15, 16 and 17 Fig. 15 Fig. 16 Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Abbott LK (1982) Comparative anatomy of vesicular-arbuscular mycorrhizas formed on subterranean clover. Aust J Bot 30:485–99

    Article  Google Scholar 

  • Abbott LK, Robson AD (1979) A quantitative study of the spores and anatomy of mycorrhizas formed by a species of Glomus, with reference to its taxonomy. Aust J Bot 27:363–375

    Article  Google Scholar 

  • Ahulu EM, Andoh H, Nonaka M (2007) Host-related variability in arbuscular mycorrhizal fungal structures in roots of Hedera rhombea, Rubus parvifolius, and Rosa multiflora under controlled conditions. Mycorrhiza 17:93–101

    Article  Google Scholar 

  • Akiyama K, Matsuzaki KI, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Alexander IJ (1989) Mycorrhizas in tropical forests. In: Proctor J (ed) Mineral nutrients in tropical forest and savanna ecosystems. Blackwell Scientific, Oxford, pp 169–188

    Google Scholar 

  • Alexander IJ, Lee S (2005) Mycorrhizas and ecosystem processes in tropical rain forest: implications for diversity. In: Burslem D, Pinard M, Hartley S (eds) Biotic interactions in the tropics. Cambridge University Press, London, UK, pp 165–203

    Chapter  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-Blast: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71:7724–7736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bago B, Cano C, Azcón-Aguilar C, Samson J, Coughlan AP, Piché Y (2004) Differential morphogenesis of the extraradical mycelium of an arbuscular mycorrhizal fungus grown monoxenically on spatially heterogeneous culture media. Mycologia 96(3):452–462

    Article  PubMed  Google Scholar 

  • Beck A (2002) Vielfalt arbuskulärer Mykorrhizen an Bäumen des tropischen Bergregenwaldes in Ecuador. Diplomarbeit, Tübingen

    Google Scholar 

  • Beck A, Kottke I, Oberwinkler F (2005) Two members of the Glomeromycota form distinct ectendomycorrhizas with Alzatea verticillata, a prominent tree in the mountain rain forest of southern Ecuador. Mycol Prog 4(1):11–22

    Article  Google Scholar 

  • Bradbury SM, Peterson RL, Bowley SR (1993) Further evidence for a correlation between nodulation genotypes in alfalfa (Medicago sativa L.) and mycorrhiza formation. New Phytol 124:665–673

    Article  Google Scholar 

  • Brundrett M, Kendrick B (1990) The roots and mycorrhizas of herbaceous woodland plants. II. Structural aspects of morphology. New Phytol 114:469–479

    Article  Google Scholar 

  • Brundrett M, Bougher N, Dell B, Grove TS, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. Australian Center for International Agricultural Research. Monogrph 32, Canberra, pp. 374 (ISBN 1 86320 181 5)

  • Bussmann RW (2002) Estudio fitosociológico de la vegetación en la Reserva Biológica San Francisco (ECSF) Zamora-Chinchipe, Ecuador. Herbario Loja 8:1–106

    Google Scholar 

  • Butler EJ (1939) The occurrence and systematic position of the vesicular-arbuscular type of mycorrhizal fungi. Trans Br Mycol Soc 22:274–301

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Gallaud (1905) Études sur les mycorhizes endotrophes. Rev Gen Bot 17

  • Gascuel O (1997) BIONJ: An improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14:685–695

    Article  CAS  PubMed  Google Scholar 

  • Gianinazzi-Pearson V, Morandi D, Dexheimer J, Gianinazzi S (1981) Ultrastructural and cytochemical features of a Glomus tenuis mycorrhiza. New Phytol 88:633–639

    Article  Google Scholar 

  • Giovannetti M, Avio L, Sbrana C, Citernesi AS (1993) Factors affecting appressorium development in the vesicular-arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe. New Phytol 123:115–122

    Article  Google Scholar 

  • Giovannetti M, Sbrana C, Citernesi AS, Luciano A (1996) Analysis of factors involved in fungal recognition responses to host-derived signals by arbuscular mycorrhizal fungi. New Phytol 133:65–71

    Article  Google Scholar 

  • Grace C, Stribley DP (1991) A safer procedure for routine staining of vesicular-arbuscular mycorrhizal fungi. Mycol Res 95:1160–1162

    Article  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hall IR (1977) Species and mycorrhizal infections of New Zealand Endogonaceae. Trans Br Mycol Soc 68:341–356

    Article  Google Scholar 

  • Haug I (2002) Identification of Picea-ectomycorrhizae by comparing DNA-sequences. Mycol Prog 1:167–178

    Article  Google Scholar 

  • Haug I, Weiß M, Homeier J, Oberwinkler F, Kottke I (2005) Russulaceae and Thelephoraceae form ectomycorrhizae with members of the Nyctaginaceae (Caryophyllales) in the tropical mountain rain forest of southern Ecuador. New Phytol 165:923–936

    Article  CAS  PubMed  Google Scholar 

  • Homeier J (2004) Baumdiversität, Waldstruktur und Wachstumsdynamik zweier tropischer Bergregenwälder in Ecuador und Costa Rica. Dissertationes Botanicae 391, J Cramer, Berlin, Stuttgart, 207 Seiten

  • Homeier J, Werner FA, Breckle SW, Gradstein SR, Richter M (2007) Potential vegetation and floristic composition of Andean forests in South Ecuador, with a focus on the RBSF. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Series Ecological Studies. Springer, Heidelberg (in press)

  • Husband R, Herre EA, Turner SL, Gallery R, Young JPW (2002) Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Mol Ecol 11:2669–2678

    Article  CAS  PubMed  Google Scholar 

  • James Y, Kauff F, Schoch CL et al (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:18–822

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucl Acids Res 33:511–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kottke I, Beck A, Oberwinkler F, Homaier J, Neill D (2004) Arbuscular endomycorrhizas are dominant in the organic soil of a neotropical montane cloud forest. J Trop Ecol 20:125–129

    Article  Google Scholar 

  • Kottke I, Haug I, Setaro S, Suárez JP, Weiß M, Preußing M, Nebel M, Oberwinkler F (2007a) Guilds of mycorrhizal fungi and their relation to trees, ericads, orchids and liverworts in a neotropical mountain rain forest. Basic Appl Ecol (in press)

  • Kottke I, Beck A, Haug I, Setaro S, Jeske V, Suárez JP, Paxmiño L, Preußing M, Nebel M, Oberwinkler F (2007b) Mycorrhizal state and new and special features of mycorrhizae of trees, ericads, orchids, ferns and liverworts. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of ecuador. Series Ecological Studies. Springer, Heidelberg (in press)

  • Merryweather J, Fitter A (1998) The arbuscular mycorrhizal fungi of Hyacinthoides nonscripta. I. Diversity of taxa. New Phytol 138:117–129

    Article  Google Scholar 

  • Morton JK (1988) Taxonomy of VA mycorrhizal fungi; classification, nomenclature and identification. Mycotaxon 32:267–324

    Google Scholar 

  • Morton JB, Redecker D (2001) Two new families of Glomales, Archaeosporaceae and Paraglomeraceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia 93:181–195

    Article  Google Scholar 

  • Mosse B (1959) Observations on the extra-matrical mycelium of a vesicular-arbuscular endophyte. Trans Br Mycol Soc 42(4):439–484

    Article  Google Scholar 

  • Nagahashi G, Douds DD Jr (2004) Isolated root caps, border cells, and mucilage from host roots stimulate hyphal branching of the arbuscular mycorrhizal fungus, Gigaspora gigantea. Mycol Res 108:1079–1088

    Article  PubMed  Google Scholar 

  • Nicolson TH (1959) Mycorrhiza in the gramineae 1. Vesicular-arbuscular endophytes, with special reference to the external phase. Trans Br Mycol Soc 42(4):421–438

    Article  Google Scholar 

  • Nicolson TH, Schenck NC (1979) Endogonaceaous mycorrhizal endophytes in Florida. Mycologia 71:178–196

    Article  Google Scholar 

  • Paulsch A, Piechowski D, Müller-Hohenstein K (2007) Forest vegetation structure along an altitudinal gradient in southern Ecuador. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a Tropical Mountain Ecosystem of Ecuador. Series Ecological Studies. Springer, Heidelberg (in press)

  • Peyronel B (1924) Prime ricerche sulla micorize endotrofiche e sulla microflora radicola normale della fanerogame. Rev Biol 5:463–485

    Google Scholar 

  • Requena N (2005) Measuring quality of service: Phosphate “à la carte” by arbuscular mycorrhizal fungi. New Phytol 168:268–270

    Article  CAS  PubMed  Google Scholar 

  • Requena N, Breuninger M, Franken P, Ocón A (2003) Symbiotic status, phosphate and sucrose regulate the expression of two plasma membrane H+ -ATPase genes from the mycorrhizal fungus Glomus mosseae. Plant Physiol 132:1540–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstruction phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassells R, Vierheilig H, Ocampo JA, Godeas A (2005) Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus. Mycol Res 109:789–794

    Article  CAS  PubMed  Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Thippayarugs S, Bansal M, Abbott LK (1999) Morphology and infectivity of fine endophyte in a mediterranean environment. Mycol Res 103:1369–1379

    Article  Google Scholar 

  • Vierheilig H (2004) Regulatory mechanisms during the plant-arbuscular mycorrhizal fungus interaction. Can J Bot 69:1321–1328

    Google Scholar 

  • Wilcke W, Yasin S, Abramowski U, Valarezo C, Zech W (2002) Nutrient storage and turnover in organic layers under tropical montane rain forest in Ecuador. Eur J Soil Sci 53:15–27

    Article  CAS  Google Scholar 

  • Wubet T, Weiß M, Kottke I, Teketay D, Oberwinkler F (2006) Phylogenetic analysis of nuclear small subunit rDNA sequences suggests that the endangered African Pencil Cedar, Juniperus procera, is associated with distinct members of Glomeraceae. Mycol Res 110:1059–1069

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the Deutsche Forschungsgemeinschaft for the generous financial support (DFG FOR 402). We are grateful to the NCI (former Fundacíon Científica San Francisco) for providing research facilities. We thank Tesfaye Wubet for providing primers and Michael Weiß for assistance in phylogenetic calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adela Beck.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Scheme illustrating handling of fine root systems of A. verticillata for microscopy and parallel DNA extraction (GIF 32 kb)

High resolution image file (TIF 2455 kb)

Fig. S2

Overview and details of the supraradical mycelium of AM associated with A. verticillata. a Root surface with abundant supraradical mycelium (sm), b–f branched appressoria-like plates displaying different staining, g supraradical vesicles of irregular shape with differently staining layers, –k fine, multibranched structures ensheathed by brown septate hyphae (bh). Scale bars 10 μm (GIF 402 kb)

High resolution image file (TIF 17589 kb)

Fig. S3

a Fine, hyaline-staining besom-like branched (blb) appressoria-like plates, b fine, dark-staining besom-like branches, c wider branched appressoria-like plate displaying differently staining layers. d and e Supraradical mycelium of morphogroup IV displaying extremely large, multibranched structures (mb) not ensheated by brown septate hyphae; lobed supraradical vesicle (sv) and thick hyphae with differently staining wall layers (arrows). Scale bars 10 μm (GIF 339 kb)

High resolution image file (TIF 5026 kb)

Table S1

Characters used for distinguishing the AM morphotypes as presented in Tables 1, 2, and 3 and Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17 (DOC 41 kb)

Table S2

Primer names, sequences, and references (DOC 23 kb)

Table S3

Primer combinations, annealing temperatures used for nested PCR, and taxa identified (DOC 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, A., Haug, I., Oberwinkler, F. et al. Structural characterization and molecular identification of arbuscular mycorrhiza morphotypes of Alzatea verticillata (Alzateaceae), a prominent tree in the tropical mountain rain forest of South Ecuador. Mycorrhiza 17, 607–625 (2007). https://doi.org/10.1007/s00572-007-0139-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-007-0139-0

Keywords

Navigation