Skip to main content
Log in

Design and analysis of a novel compact XYZ parallel precision positioning stage

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

XYZ-precision positioning stages are of great significance in micro/nanoscale manipulation applications. This paper presents a novel parallel 3-degree-of-freedom (3-DOF) XYZ precision positioning stage with compact structure. Compared with the existing parallel triaxial positioning stages, the proposed stage features more compact size in the height. A newly developed Z-shaped flexure hinge based mechanism is introduced in the design of stage to generate decoupled motions in both z-axis and y-axis based on the bending deformation of the beams and the differential moving principle, respectively. The input stiffness of the positioning stage is calculated by resorting to matrix-based method, and validated by finite-element analysis. The simulation results are shown to be almost consistent with the results of the derived analytical model with negligible errors. Moreover, the reachable workspace is determined and the maximum stress is also obtained by loading the assumed maximum input displacement on the platform. The preliminary results pave the way for promising applications of the proposed stage in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

Download references

Acknowledgements

This paper is supported by Nature Science Foundation of China (51575544) and the State Key Laboratory of Ultra-precision Machining Technology in the Department of Industrial and Systems Engineering of Hong Kong Polytechnic University (BBXG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangmin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Li, Y., Cheung, C.F. et al. Design and analysis of a novel compact XYZ parallel precision positioning stage. Microsyst Technol 27, 1925–1932 (2021). https://doi.org/10.1007/s00542-020-04968-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-020-04968-6

Navigation