Skip to main content
Log in

Electro-thermal modeling and experimental validation for multilayered metallic microstructures

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper proposes an electro-thermal modeling on multilayered metallic microstructures that are able to deploy vertically when thermally actuated. A typical design of such microstructures is presented, and the working principle is described. A lumped model is established to find the analytical solution to the temperature distribution when actuated by Joule heating, which shows a good agreement with the results from finite element analysis (FEA). Fabrication and experimental testing of the microstructure are followed, and scanning electron microscopy (SEM) and temperature-dependent electrical measurement are combined to determine the in-situ temperature when the microstructure is heated with a constant power of 0.56 mW in SEM. The peak temperature derived from the experiment is approximately 333 K, while the peak temperature simulated by the lumped model and FEA model are 330.99 and 331.85 K, respectively. The proposed multilayered microstructures show great potential for applications in microrobotic actuators, and the lumped model offers an effective tool for the design and optimization of such microstructures based on diverse requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Atre A (2005) Analysis of out-of-plane thermal microactuators. J Micromech Microeng 16:205

    Article  Google Scholar 

  • Bechtold T, Rudnyi EB, Korvink JG (2005) Dynamic electro-thermal simulation of microsystems—a review. J Micromech Microeng 15:R17

    Article  Google Scholar 

  • Bergman TL, Incropera FP, Lavine AS, DeWitt DP (2011) Introduction to heat transfer. John Wiley and Sons, Amsterdam

    Google Scholar 

  • Cramer NB et al (2019) Elastic shape morphing of ultralight structures by programmable assembly. Smart Mater Struct 28:055006

    Article  Google Scholar 

  • Fu H et al (2018) Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics. Nat Mater 17:268–276. https://doi.org/10.1038/s41563-017-0011-3

    Article  Google Scholar 

  • Galos R, Shi Y, Ren Z, Zhou L, Sun H, Su X, Yuan J (2017) Electrical impedance measurements of PZT nanofiber sensors. J Nanomater. https://doi.org/10.1155/2017/8275139

    Article  Google Scholar 

  • Hsueh CH, Luttrell CR, Cui T (2006) Thermal stress analyses of multilayered films on substrates and cantilever beams for micro sensors and actuators. J Micromech Microeng 16:2509–2515. https://doi.org/10.1088/0960-1317/16/11/036

    Article  Google Scholar 

  • Huang Q-A, Lee NKS (1999) Analysis and design of polysilicon thermal flexure actuator. J Micromech Microeng 9:64

    Article  Google Scholar 

  • Hussein H, Tahhan A, Le Moal P, Bourbon G, Haddab Y, Lutz P (2016) Dynamic electro-thermo-mechanical modelling of a U-shaped electro-thermal actuator. J Micromech Microeng 26:025010

    Article  Google Scholar 

  • Jia K, Samuelson SR, Xie H (2011) High-fill-factor micromirror array with hidden bimorph actuators and tip–tilt-piston capability. J Microelectromech Syst 20:573–582

    Article  Google Scholar 

  • Jiang J, Hilleringmann U, Shui X (2007) Electro-thermo-mechanical analytical modeling of multilayer cantilever microactuator. Sens Actuators A 137:302–307

    Article  Google Scholar 

  • Kim Y-S, Dagalakis NG, Gupta SK (2013) Creating large out-of-plane displacement electrothermal motion stage by incorporating beams with step features. J Micromech Microeng 23:055008

    Article  Google Scholar 

  • Koshi T, Iwase E (2019) Self-healing metal interconnect for flexible electronic device. In: 2019 International Conference on Electronics Packaging (ICEP), IEEE, pp. 291–293.

  • Lerch P, Slimane CK, Romanowicz B, Renaud P (1996) Modelization and characterization of asymmetrical thermal micro-actuators. J Micromech Microeng 6:134

    Article  Google Scholar 

  • Li L, Uttamchandani D (2009) Dynamic response modelling and characterization of a vertical electrothermal actuator. J Micromech Microeng 19:075014

    Article  Google Scholar 

  • Li J, Xu C, Tichy J, Borca-Tasciuc D-A (2018a) A 1D model for design and predicting dynamic behavior of out-of-plane MEMS. J Micromechan Microeng 28:085021

    Article  Google Scholar 

  • Li X, Huang Y, Chen X, Xu X, Xiao D (2018b) Electro-thermal analysis of an Al–Ti multilayer thin film microheater for MEMS thruster application. Microsyst Technol 24:2409–2417

    Article  Google Scholar 

  • Liu R et al (2013) Elimination of initial stress-induced curvature in a micromachined bi-material composite-layered cantilever. J Micromech Microeng 23:095019

    Article  Google Scholar 

  • Nathan A et al (2012) Flexible electronics: the next ubiquitous platform. Proc IEEE 100:1486–1517. https://doi.org/10.1109/jproc.2012.2190168

    Article  Google Scholar 

  • Ogando K, La Forgia N, Zarate J, Pastoriza H (2012a) Design and characterization of a fully compliant out-of-plane thermal actuator. Sens Actuators A 183:95–100

    Article  Google Scholar 

  • Ogando K, La Forgia N, Zárate JJ, Pastoriza H (2012b) Design and characterization of a fully compliant out-of-plane thermal actuator. Sens Actuators A 183:95–100. https://doi.org/10.1016/j.sna.2012.05.028

    Article  Google Scholar 

  • Ren Z, Yuan J, Su X, Sun H, Galos R, Shi Y A (2018) New fabrication process for microstructures with high area-to-mass ratios by stiffness enhancement. In: ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2018. American Society of Mechanical Engineers, pp. V004T008A034–V004T008A034.

  • Ren Z et al (2019) Vertical deployment of multilayered metallic microstructures with high area-to-mass ratios by thermal actuation. J Micro Nano-Manuf. https://doi.org/10.1115/1.4043987

    Article  Google Scholar 

  • Shintake J, Cacucciolo V, Floreano D, Shea H (2018) Soft robotic grippers. Adv Mater. https://doi.org/10.1002/adma.201707035

    Article  Google Scholar 

  • Sohi AN, Nieva PM (2014) Thermal sensitivity analysis of curved bi-material microcantilevers. J Micromech Microeng 24:115004

    Article  Google Scholar 

  • Sohi AN, Nieva PM, Khajepour A (2015) Electrothermomechanical modeling of out-of-plane deformation in single-stepped beams actuated by resistive heating. J Micromech Microeng. https://doi.org/10.1088/0960-1317/25/3/035028

    Article  Google Scholar 

  • Su X, Ren Z, Yan J, Shi Y, Pan Q (2019) Microstructure and twisting ability of an adjusted antisymmetric angle ply laminate. Appl Phys Lett 114:211902

    Article  Google Scholar 

  • Todd ST, Xie H (2008) An electrothermomechanical lumped element model of an electrothermal bimorph actuator. J Microelectromech Syst 17:213–225

    Article  Google Scholar 

  • Tsai CH, Tsai CW, Chang HT, Liu SH, Tsai JC (2015) Electrothermally-actuated micromirrors with bimorph actuators–bending-type and torsion-type. Sensors (Basel) 15:14745–14756. https://doi.org/10.3390/s150614745

    Article  Google Scholar 

  • Wu L, Xie H (2008) A large vertical displacement electrothermal bimorph microactuator with very small lateral shift. Sens Actuators A 145:371–379

    Article  Google Scholar 

  • Yan D, Khajepour A, Mansour R (2003) Modeling of two-hot-arm horizontal thermal actuator. J Micromech Microeng 13:312

    Article  Google Scholar 

  • Yan D, Khajepour A, Mansour R (2004) Design and modeling of a MEMS bidirectional vertical thermal actuator. J Micromech Microeng 14:841

    Article  Google Scholar 

  • Yan Z et al (2017) Three-dimensional mesostructures as high-temperature growth templates, electronic cellular scaffolds, and self-propelled microrobots. Proc Natl Acad Sci USA 114:E9455–E9464. https://doi.org/10.1073/pnas.1713805114

    Article  Google Scholar 

  • Zhang Y (2016) Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. Sci Adv 2:1601014

    Article  Google Scholar 

  • Zhang Y, Zhang F, Yan Z, Ma Q, Li X, Huang Y, Rogers JA (2017) Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat Rev Mater. https://doi.org/10.1038/natrevmats.2017.19

    Article  Google Scholar 

  • Zhong J et al (2019) A flexible piezoelectret actuator/sensor patch for mechanical human-machine interfaces. ACS Nano 13:7107–7116

    Article  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (No.11572248) and China Scholarship Council have in part supported the research. The research was in part carried out at the Center for Functional Nanomaterials (CFN), Brookhaven National Laboratory (BNL), which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongjing Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 53320 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Z., Yuan, J., Su, X. et al. Electro-thermal modeling and experimental validation for multilayered metallic microstructures. Microsyst Technol 27, 2041–2048 (2021). https://doi.org/10.1007/s00542-020-04964-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-020-04964-w

Navigation