Skip to main content
Log in

Temporal instability of a confined nano-liquid film with the Marangoni convection effect: viscous potential theory

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The current paper utilizes the viscous potential theory to analyze the temporal stability of a swirling annulus of two nano gas–liquid layers. The analysis depends mainly on the normal mode technique. The distributions of the heat, volume fraction, and velocity field are achieved. Furthermore, surface tension is considered as a function of the heat and the volume fraction distributions. Therefore, the impact of the Marangoni convection is taken into account. The balance of the normal stress tensor at the interface yields a complicated transcendental dispersion equation. Actually, this equation has no exact solution. Consequently, numerical calculations are established to indicate the relation between the growth rate and the wavenumber of the surface waves. Graphically, the influences of the various physical parameters are depicted. It is found that the Brownian motion accelerates the particles which leads to a destabilization of the interface. Simultaneously, the thermophoresis produces a motion of hot particles from the interface towards the boundaries, which stabilizes the interface. Furthermore, the increase of the surface tension, due to the Marangoni effect, enhances the interface rigidity and stabilizes it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\( \hat{C_{\ell }}, \hat{C_{g}} \) :

Nano-particles concentration, volume fraction, in liquid and gas

\( C_{0} \) :

Basic nano-particles concentration

\( C_{\ell } \) :

Nano-particles concentration in the liquid

\( C_{g} \) :

Nano-particles concentration in the gas

\( C_{w} \) :

Nano-particles concentration at the wall

\( c_{p\,} \) :

Specific heat

\( D_{T} \) :

Thermophoresis parameter

\( D_{B} \) :

Brownian diffusion

\( F \) :

Interface position function

\( I_{0} \) :

Modified Bessel’s function of the first kind

\( K_{0} \) :

Modified Bessel’s function of the second kind

\( k \) :

Wavenumber

\( k_{f} \) :

Thermal diffusivity

\( Le \) :

Lewis parameter

\( Na \) :

Modified diffusivity ratio

\( p \) :

Pressure

\( \Pr \) :

Prandtl number

\( R \) :

Thickness of undisturbed liquid layer

\( r \) :

Radial coordinate

\( \text{Re} \) :

Reynolds number

\( Ro \) :

Rossby number

t :

Time

\( T \) :

Perturbed temperature

\( T_{0} \) :

Basic temperature

\( \hat{T}_{\ell }, \hat{T}_g \) :

Temperature of the liquid and gas

\( T_{\ell}, T_{g} \) :

Perturbed Temperature of the liquid and gas

\( T_{w} \) :

Temperature at the wall

\( u_{\ell } ,\,u_{g} \) :

Perturbed velocities of liquid and gas in the axial direction

\( \hat{u}_{\ell } ,\,\hat{u}_{g} \) :

Velocities of liquid and gas in the axial direction

\( U_{\ell } ,\,U_{g} \) :

Initial velocities of liquid and gas

\( v_{\ell } ,\,v_{g} \) :

Perturbed velocities of liquid and gas in the radial direction

\( \hat{v}_{\ell } ,\,\hat{v}_{g} \) :

Velocities of liquid and gas in the radial direction

\( w_{\ell } ,\,w_{g} \) :

Perturbed velocities of liquid and gas in the azimuthal direction

\( \hat{w}_{\ell } ,\,\hat{w}_{g} \) :

Velocities of liquid and gas in the azimuthal direction

\( \rho \) :

Density of the fluid

\( \theta \) :

Azimuthal coordinate

\( \beta \) :

Initial angular velocity

\( \sigma \) :

Surface tension

\( \omega ,\,\varOmega \) :

Wave frequency

\( \alpha_{f} \) :

Non-dimensional thermal diffusivity

\( \eta \) :

Disturbance of the interface

\( (\rho c_{p} )_{f} \) :

Heat capacities of the fluid

\( (\rho c_{p} )_{p} \) :

Heat capacities of the nanoparticles

\( g \) :

Quantities of the gas phase

\( \ell \) :

Quantities of the liquid phase

\( C \) :

Solutal quantity

\( T \) :

Thermal quantity

\( j \) :

Suffix denoted for liquid (\( \ell \)) or gas (\( g \))

References

  • Akbari M, Galanis N, Behzadmehr A (2011) Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer. Int J Ther Sci 50:1343–1354

    Article  Google Scholar 

  • Andrade EN, Da C (1963) Whirlpools, vortices and bath tubs. New Sci 17(325):302–304

    Google Scholar 

  • Asthana R, Agrawal GS (2007) Viscous potential flow analysis of Kelvin-Helmholtz instability with mass transfer and vaporization. Phys A 382:389–404

    Article  Google Scholar 

  • Asthana R, Agrawal GS (2010) Viscous potential flow analysis of electrohydrodynamic Kelvin–Helmholtz instability with heat and mass transfer. Int J Eng Sci 48:1925–1936

    Article  MathSciNet  Google Scholar 

  • Bazarov V, Yang V, Puri P, (2004) Design and dynamics of jet and swirl injectors. In: Progress in astronautics and aeronautics, vol 200, chap 2. AIAA, pp 19–103

  • Buongiorno J (2006) Convective transport in nanofluids. J Heat Transf 128:240–250

    Article  Google Scholar 

  • Chandrasekhar S (1961) Hydrodynamic and hydrodynamic stability. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Chen CH (2007) Marangoni effects on forced convection of power-law liquids in a thin film over a stretching surface. Phys Lett A 370:51–57

    Article  Google Scholar 

  • Feynman R (1964) The Brownian Movement Feynman Lec. Phys. http://feynmanlectures.caltech.edu/I_41.html. Accessed 30 Oct 2019

  • Fu Q, Yang L (2011) Theoretical Investigation of the dynamics of a gas-liquid coaxial swirl injector. J Propuls Power 27(1):144

    Article  Google Scholar 

  • Fu Q, Yang L, Tong M (2014) Absolute and convective instability of a confined swirling annular liquid layer. Atomization Sprays 24(7):555–573

    Article  Google Scholar 

  • Fu QF, Jia BQ, Yang LJ (2017) Stability of a confined swirling annular liquid layer with heat and mass transfer. Int J Heat Mass Transf 104:644–649

    Article  Google Scholar 

  • Fu QF, Deng XD, Jia BQ, Yang LJ (2018) Temporal instability of a confined liquid film with heat and mass transfer. AIAA J 56:1–8

    Article  Google Scholar 

  • Funada T, Joseph DD (2001) Viscous potential flow analysis of Kelvin–Helmholtz instability in a channel. J Fluid Mech 445:263–283

    Article  MathSciNet  Google Scholar 

  • Funada T, Joseph DD (2002) Viscous potential flow analysis of capillary instability. Int J Multiph Flow 28:1459–1478

    Article  Google Scholar 

  • Funada T, Joseph DD (2003) Viscoelastic potential flow analysis of capillary instability. J Non-Newton Fluid Mech 111:87–105

    Article  Google Scholar 

  • Gomez L, Mohan R, Shoham O (2004a) Swirling gas–liquid two-phase flow—experiment and modeling part I: swirling flow field. Trans ASME J Fluids Eng 126:935–942

    Article  Google Scholar 

  • Gomez L, Mohan R, Shoham O (2004b) Swirling gas–liquid two-phase flow—experiment and modeling part II: turbulent quantities and core stability. Trans ASME J Fluids Eng 126:943–959

    Article  Google Scholar 

  • Hassan MA (2018) Thermosolutal Marangoni convection effect on the MHD flow over an unsteady stretching sheet. J Egypt Math Soc 26(1):57–70

    Article  MathSciNet  Google Scholar 

  • Hassan MA (2019) Linear instability of viscoelastic nanofluid microjet with the effect of Marangoni convection. Phys Scr 94:025701

    Article  Google Scholar 

  • Hsieh DY (1972) Effects of heat and mass transfer on Rayleigh–Taylor instability. J Basic Eng 94:156–159

    Article  Google Scholar 

  • Hsieh DY (1978) Interfacial stability with mass and heat transfer. Phys Fluids 21:745–748

    Article  Google Scholar 

  • Jia BQ, Yang LY, Xie L, Fu QF, Cui X (2019) Linear stability of confined swirling annular liquid layers in the presence of gas velocity oscillations with heat and mass transfer. Int J f Heat Mass Transf 138:117–125

    Article  Google Scholar 

  • Kannaiyan K, Sadr R (2017) The effects of alumina nanoparticles as fuel additives on the spray characteristics of gas-to-liquid jet fuels. Exp Therm Fluid Sci 87:93–103

    Article  Google Scholar 

  • Magyari E, Chamkha AJ (2008) Exact analytical results for the thermosolutal MHD Marangoni boundary layers. Int J Therm Sci 47:848–857

    Article  Google Scholar 

  • Moatimid GM, Hassan MA (2012) Viscous potential flow of electrohydrodynamic Kelvin-Helmholtz instability through two porous layers with suction/injection effect. Int J Eng Sci 54:15–26

    Article  MathSciNet  Google Scholar 

  • Moatimid GM, Hassan MA (2013) The instability of an electrohydrodynamic viscous liquid micro-cylinder buried in a porous medium: effect of thermosolutal Marangoni convection. Math Probl Eng 2013:416562

    Article  MathSciNet  Google Scholar 

  • Moatimid GM, Hassan MA (2014) Three-dimensional viscous potential electrohydrodynamic Kelvin–Helmholtz instability through vertical cylindrical porous inclusions with permeable boundaries. J Fluids Eng 136(021203):1–10

    Google Scholar 

  • Moatimid GM, Hassan MA (2018) Linear instability of water-oil electrohydrodynamic nanofluid layers: analytical and numerical study. J Comput Theor Nanosci 15:1495–1510

    Article  Google Scholar 

  • Moatimid GM, Obied Allah MH, Hassan MA (2013) Kelvin–Helmholtz instability for flow in porous media under the influence of oblique magnetic fields: a viscous potential flow analysis. Phys Plasmas 20:102111

    Article  Google Scholar 

  • Probstein RF (1994) Physicochemical Hydrodynamics: An Introduction, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  • Selvan VAM, Anand RB, Udayakumar M (2014) Effect of cerium oxide nanoparticles and carbon nanotubes as fuel-borne additives in diesterol blends on the performance, combustion and emission characteristics of a variable compression ratio engine. Fuel 130:160–167

    Article  Google Scholar 

  • Sheikholeslami M (2018) Finite element method for PCM solidification in existence of CuO nanoparticles. J Mol Liq 265:347–355

    Article  Google Scholar 

  • Sheikholeslami M (2019a) New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng 344:319–333

    Article  MathSciNet  Google Scholar 

  • Sheikholeslami M (2019b) Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng 344:306–318

    Article  MathSciNet  Google Scholar 

  • Sheikholeslami M, Chamkha AJ (2017) Influence of Lorentz forces on nanofluid forced convection considering Marangoni convection. J Mol Liq 225:750–757

    Article  Google Scholar 

  • Sheikholeslami M, Rezaeianjouybari B, Darzi M, Shafee A, Li Z, Nguyen TK (2019) Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mass Transf 141:974–980

    Article  Google Scholar 

  • Sheu LJ (2011) Linear stability of convection in a viscoelastic nanofluid layer. World Acad Sci Eng Technol 58:289–295

    Google Scholar 

  • Sinan G, Kunt A, Hakan E (2014) Comparison of single and two-phase models for nanofluid convection at the entrance of a uniformly heated tube. Int J Ther Sci 80:83–92

    Article  Google Scholar 

  • Soutter W (2019) Nanoparticles as fuel additives. https://www.azonano.com/article.aspx?ArticleID=3085. Accessed 25 Jan 2020

  • Web site: Engineeringtoolbox (2009) https://www.engineeringtoolbox.com/prandtl-number-d_1068.html. Accessed 25 Jan 2020

  • Web site: Wikipedia (2014) https://en.wikipedia.org/wiki/Prandtl_number. Accessed 25 Jan 2020

  • Yan K, Ning Z, Lü M, Sun C, Fu J, Li Y (2015) Interface instability mechanism of an annular viscous liquid sheet exposed to axially moving inner and outer gas. Eur J Mech B/Fluids 52:185–190

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona A. A. Mohamed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The constants that appearing in Eq. (25) may be listed as follows:

$$ \begin{aligned} & m_{n}^{2} = k^{2} + \left( {\text{Re} \,\Pr } \right)_{j} \left( {\varOmega + i\,k} \right)\,\,,\,\,\,\,\,\,\,\,\,n = 1\,at\,j = \ell ,\,n = 2\,at\,j = g \\ & m_{s}^{2} = k^{2} + \left( {\text{Re} \,\Pr Le} \right)_{j} \left( {\varOmega + i\,k} \right)\,\,\,\,\,\,\,\,\,\,\,\,s = 3\,at\,j = \ell ,\,s = 4\,at\,j = g, \\ \end{aligned} $$

where \( \text{Re}_{j} = \frac{{\rho_{j} U_{j} R}}{{\mu_{j} }},\, \) are Reynold’s numbers for liquid and gas phases, and

\( \Pr_{j} = \frac{{(c_{p\,} \mu )_{j} }}{{k_{{f_{j} }} }},\, \) are Prandtl numbers for liquid and gas phases.

\( Le_{j} = \frac{{k_{{f_{j} }} }}{{(\rho c_{p} )_{j} D_{{B_{j} }} }} \), are Lewis numbers for liquid and gas phases, respectively.

The constants of solutions (28)-(30) are derived by using the boundary conditions (27) as follows:

$$ A_{2} = \frac{i\varOmega }{{kI_{0} (\lambda )}},A_{1} = \frac{i\varOmega }{k}\left( {\frac{{K_{1} (\lambda R_{w} )}}{{I_{0} (\lambda )K_{1} (\lambda R_{w} ) + I_{1} (\lambda R_{w} )K_{0} (\lambda )}}} \right),B_{1} = \frac{i\varOmega }{k}\left( {\frac{{I_{1} (\lambda R_{w} )}}{{I_{0} (\lambda )K_{1} (\lambda R_{w} ) + I_{1} (\lambda R_{w} )K_{0} (\lambda )}}} \right) $$
$$ \begin{aligned} & a_{11} = \,\frac{{T_{w} }}{{I_{0} (m_{1} R_{w} )}} - a_{21} \,\frac{{K_{0} (m_{1} R_{w} )}}{{I_{0} (m_{1} R_{w} )}}\,, \\ & a_{11} \,I_{0} (m_{1} ) + a_{21} \,K_{0} (m_{1} ) = a_{12} \,I_{0} (m_{2} )\,, \\ & k_{{f_{\ell } }} \left( {a_{11} m_{1} I_{1} (m_{1} ) - a_{21} m_{1} \,K_{1} (m_{1} )} \right) = k_{{f_{g} }} \left( {a_{12} m_{2} I_{1} (m_{2} )} \right) \\ \end{aligned} $$
$$ \begin{aligned} & a_{13} I_{0} (m_{3} R_{w} ) + a_{23} \,K_{0} (m_{3} R_{w} ) + F_{1} (R_{w} ) = \,C_{w} \,, \\ & a_{13} I_{0} (m_{3} ) + a_{23} \,K_{0} (m_{3} ) + F_{1} (1) = a_{14} \,I_{0} (m_{4} )\, + F_{2} (1), \\ & D_{{B_{\ell } }} \left( {a_{13} m_{3} I_{1} (m_{1} ) - a_{23} m_{3} \,K_{1} (m_{1} ) + F_{1}^{\backslash } (1)} \right) = D_{{B_{g} }} \left( {a_{14} m_{4} I_{1} (m_{4} ) + F_{2}^{\backslash } (1)} \right) \\ \end{aligned} $$
$$ a_{11} = \frac{{\Delta_{1} }}{{\Delta_{T} }},\quad a_{21} = \frac{{\Delta_{2} }}{{\Delta_{T} }},\quad a_{12} = \frac{{\Delta_{3} }}{{\Delta_{T} }}, $$
$$ \Delta_{T} = \left| {\begin{array}{*{20}c} {I_{0} (m_{1} R_{w} )} & {K_{0} (m_{1} R_{w} )} & 0 \\ {I_{0} (m_{1} )} & {K_{0} (m_{1} )} & { - I_{0} (m_{2} )} \\ {k_{f}^{*} m_{1} I_{1} (m_{1} )} & { - k_{f}^{*} m_{1} K_{1} (m_{1} )} & { - m_{2} I_{1} (m_{2} )} \\ \end{array} } \right|, $$
$$ \begin{aligned} & \Delta_{1} = \left| {\begin{array}{*{20}c} {T_{w} } & {K_{0} (m_{1} R_{w} )} & 0 \\ 0 & {K_{0} (m_{1} )} & { - I_{0} (m_{2} )} \\ 0 & { - k_{f}^{*} m_{1} K_{1} (m_{1} )} & { - m_{2} I_{1} (m_{2} )} \\ \end{array} } \right|,\quad \Delta_{2} = \left| {\begin{array}{*{20}c} {I_{0} (m_{1} R_{w} )} & {T_{w} } & 0 \\ {I_{0} (m_{1} )} & 0 & { - I_{0} (m_{2} )} \\ {k_{f}^{*} m_{1} I_{1} (m_{1} )} & 0 & { - m_{2} I_{1} (m_{2} )} \\ \end{array} } \right| \\ & \Delta_{3} = \left| {\begin{array}{*{20}c} {I_{0} (m_{1} R_{w} )} & {K_{0} (m_{1} R_{w} )} & {T_{w} } \\ {I_{0} (m_{1} )} & {K_{0} (m_{1} )} & 0 \\ {k_{f}^{*} m_{1} I_{1} (m_{1} )} & { - k_{f}^{*} m_{1} K_{1} (m_{1} )} & 0 \\ \end{array} } \right| \\ \end{aligned} $$
$$ a_{13} = \frac{{\Delta_{5} }}{{\Delta_{C} }},\quad a_{23} = \frac{{\Delta_{6} }}{{\Delta_{C} }},\quad a_{14} = \frac{{\Delta_{7} }}{{\Delta_{C} }}, $$

where

$$ \Delta_{C} = \left| {\begin{array}{*{20}c} {I_{0} (m_{3} R_{w} )} & {K_{0} (m_{3} R_{w} )} & 0 \\ {I_{0} (m_{3} )} & {K_{0} (m_{3} )} & { - I_{0} (m_{4} )} \\ {D_{B}^{*} m_{3} I_{1} (m_{3} )} & { - D_{B}^{*} m_{3} K_{1} (m_{3} )} & { - m_{4} I_{1} (m_{4} )} \\ \end{array} } \right|, $$
$$ \begin{aligned} & \Delta_{5} = \left| {\begin{array}{*{20}c} {I_{0} (m_{3} R_{w} )} & {C_{w} - F_{1} (R_{w} )} & 0 \\ {I_{0} (m_{3} )} & 0 & { - I_{0} (m_{4} )} \\ {D_{B}^{*} m_{3} I_{1} (m_{3} )} & 0 & { - m_{4} I_{1} (m_{4} )} \\ \end{array} } \right|,\quad \Delta_{6} = \left| {\begin{array}{*{20}c} {I_{0} (m_{3} R_{w} )} & {K_{0} (m_{1} R_{w} )} & {C_{w} - F_{1} (R_{w} )} \\ {I_{0} (m_{3} )} & {K_{0} (m_{1} )} & 0 \\ {D_{B}^{*} m_{3} I_{1} (m_{3} )} & { - D_{B}^{*} m_{3} K_{1} (m_{3} )} & 0 \\ \end{array} } \right| \\ & \Delta_{7} = \left| {\begin{array}{*{20}c} {C_{w} - F_{1} (R_{w} )} & {K_{0} (m_{3} R_{w} )} & 0 \\ 0 & {K_{0} (m_{3} )} & { - I_{0} (m_{4} )} \\ 0 & { - D_{B}^{*} m_{3} K_{1} (m_{3} )} & { - m_{4} I_{1} (m_{4} )} \\ \end{array} } \right|, \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moatimid, G.M., Hassan, M.A. & Mohamed, M.A.A. Temporal instability of a confined nano-liquid film with the Marangoni convection effect: viscous potential theory. Microsyst Technol 26, 2123–2136 (2020). https://doi.org/10.1007/s00542-020-04772-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-020-04772-2

Navigation