Skip to main content
Log in

A self-calibration method for error of photoelectric encoder based on gyro in rotational inertial navigation system

  • Review Article
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

As a precision goniometer, photoelectric encoder plays an important role in rotational inertial navigation system (RINS). The encoder is used to measure the rotate angle of rotating mechanism for attitude calculation and feedback of motor control. However, the experiment shows that there are position-related errors in the encoder output, so calibration is necessary in high precision applications. This paper presents a calibration method designed by the characteristics of encoder errors and the structure of a tri-axis RINS. In RINS, the gyro sensitive axis can be coincided with the motor axis by gimbals rotation, and then the gyro and the photoelectric encoder measure the same angle, so the error can be calculated as the difference between the encoder output and the integral of gyro output. The error will be analyzed through Fourier method, then the error will be fitted by least squares method and a harmonic model will be established. The verification experiments demonstrate that the angle measurement error is reduced from ± 40″ to ± 2″, and the attitude output error drops 75″. The calibration method is proved to be experimentally effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Chamoun JN, Digonnet MJF (2015) Noise and bias error due to polarization coupling in a fiber optic gyroscope. J Lightwave Technol 33(13):2839–2847

    Article  Google Scholar 

  • Deng Z, Sun M, Wang B (2014) Error modulation scheme analysis of dual-axis rotating strap-down inertial navigation system based on FOG. In: Proceedings of the 33rd Chinese Control Conference (CCC’14) , pp 692–696, Nanjing, China

  • Filator YV, Agapov MY, Bournachev MN, Loukianov DP, Pavlov PA (2003) Laser goniometer systems for dynamic calibration of optical encoders. Proc SPIE 5144:381–390

    Article  Google Scholar 

  • Geller ES (1968) Inertial system platform rotation. IEEE Trans Aerospace Electron Sys AES-4(4):557–568

    Article  Google Scholar 

  • Gerberding O, Cervantes FG, Melcher J, Pratt JR, Taylor JM (2015) Opt-mechanical reference accelerometer. Metrologia 52(5):654–665

    Article  Google Scholar 

  • Hai YU, Qiuhua WAN, Shujie WANG, Xinran LU, Yingcai DU (2015) High-precision real-time angle reference in dynamic measurement of photoelectric encoder. Chin Opt 8(3):447–455

    Article  Google Scholar 

  • Hong LI, You FC, Hui DL (2005) Dynamic evaluation method for interpolation errors in photoelectric encoder. J Translocat Technol 18(4):927–930

    Google Scholar 

  • Huang Z, Qin S, Wang X et al (2007a) Error analysis of optical angular encoder and its calibration with ring laser gyro. Chin J Sci Instrum 10:27

    Google Scholar 

  • Huang Z, Qin S, Wang X et al (2007b) Error analysis of optical angular encoder and its calibration with ring laser gyro. Chin J Sci Instrum 28:1866

    Google Scholar 

  • Jianhua C, Mingyue L, Daidai C, Li C, Junyu S (2011) Research of strapdown inertial navigation system monitor technique based on dual-axis consequential rotation. In: Proceedings of the International Conference on Information and Automation (ICIA’11), pp 203–208

  • Johnson N, Mohan KJ, Janson KE et al (2013) Optimization of incremental optical encoder pulse processing. In: IEEE international mutli-conference on automation, computing, communication, control and compressed sensing (iMac4s), pp 769–773

  • Li K, Gao P, Wang L et al (2015) Analysis and improvement of attitude output accuracy in rotation inertial navigation system. Math Probl Eng 2015(1):1–10

    Article  Google Scholar 

  • Lu, Li X, Feng H et al (2005) A simulated evaluation method for interpolation errors in photoelectric encoder. Control Autom 21(10-1):109–110

    Google Scholar 

  • Morrow Jr RB, Heckman DW (1998) High precision IFOG insertion into the strategic submarine navigation system. In Proceedings of the IEEE Position Location and Navigation Symposium, pp 332–338, IEEE, Palm Springs, Calif, USA

  • Qin S, Huang Z, Wang X (2010) Optical angular encoder installation error measurement and calibration by ring laser gyroscope. IEEE Trans Instrum Meas 59(3):506–511

    Article  Google Scholar 

  • Ren Q, Wang B, Deng Z et al (2014) A multi-position self-calibration method for dual-axis rotational inertial navigation system. Sens Actuators A Phys 219:24–31

    Article  Google Scholar 

  • Savage PG (2013) Blazing gyros: the evolution of strap-down inertial navigation technology for aircraft. J Guid Control Dyn 36(3):637–655

    Article  Google Scholar 

  • Stockton JK, Takase K, Kasevich MA (2011) Absolute geodetic rotation measurement using atom interferometry. Phys Rev Lett 107(13):133001

    Article  Google Scholar 

  • Su D, Xu Z, Jia J, Liu B, Li D (2013) Read-head design for improving the precision of circular grating angular measuring system. J Electron Meas Instrum 27(7):653–657

    Article  Google Scholar 

  • Sun W, Wang D, Xu L, Xu L (2013) MEMS-based rotary strap-down inertial navigation system. Measurement 46(8):2585–2596

    Article  Google Scholar 

  • Waldmann J, Silva RIG, Chagas RAJ (2016) Observability analysis of inertial navigation errors from optical flow subspace constraint. Inf Sci 327:300–326

    Article  Google Scholar 

  • Wang XJ (2012) Errors and precision analysis of subdivision signals for photoelectric angle encoders. Opt Precis Eng 20(2):379–386

    Article  Google Scholar 

  • Wang C, Zhang G, Guo S, Jiang J (1996) Auto correction of interpolation errors in optical encoders. Proc SPIE 2718:439–447

    Article  Google Scholar 

  • Wang X, Wu J, Xu T, Wang W (2013) Analysis and verification of rotation modulation effects on inertial navigation system based on MEMS sensors. J Navig 66(5):751–772

    Article  Google Scholar 

  • Wang L, Wang W, Zhang Q, Gao P (2014) Self-calibration method based on navigation in high-precision inertial navigation system with fiber optic gyro. Opt Eng 53(6):064103

    Article  Google Scholar 

  • Wang Z, Zhao H, Qiu S et al (2015) Stance-phase detection for ZUPT-aided foot-mounted pedestrian navigation system. IEEE/ASME Trans Mechatron 20(6):3170–3181

    Article  Google Scholar 

  • Wu Z, Hu X, Wu M, Mu H, Cao J, Zhang K, Tuo Z (2013) An experimental evaluation of autonomous underwater vehicle localization on geomagnetic map. Appl Phys Lett 103(10):104102

    Article  Google Scholar 

  • Ying S, Wan QH, Wang SJ et al (2010) Design of signal process system for spaceborne photoelectric encoder. Opt Precis Eng 18(5):1182–1188

    Google Scholar 

  • Yuan B, Liao D, Han S (2012) Error compensation of an optical gyro INS by multi-axis rotation. Meas Sci Technol 23(2):025102

    Article  Google Scholar 

  • Zhang Q, Wang L, Liu Z, Feng P (2015) An accurate calibration method based on velocity in a rotational inertial navigation system. Sens (Basel) 15(8):18443–18458

    Article  Google Scholar 

  • Zheng Z, Han S, Zheng K (2015) An eight-position self-calibration method for a dual-axis rotational inertial navigation system. Sens Actuator A Phys 232:39–48

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Aeronautical Science Foundation of China (Grant No. 20175851030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Wang, L., Wang, W. et al. A self-calibration method for error of photoelectric encoder based on gyro in rotational inertial navigation system. Microsyst Technol 25, 2145–2152 (2019). https://doi.org/10.1007/s00542-018-4139-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-4139-0

Navigation