Skip to main content
Log in

Resonance patterns in cantilevered plates with micro electromechanical systems (MEMS) applications

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Detailed maps of the resonance patterns of cantilever plates highlighting width and Poisson’s ratio effects are presented. At present, this is lacking in the literature for higher bending and for torsional modes. Ranges of curve crossing and curve veering are identified and their potential effects on micro electro-mechanical systems (MEMS) applications are discussed. Results for three common materials are included. Closed form expressions are presented that could predict three plate resonance types: beam-like, symmetric and anti symmetric (torsional). It is also shown that some torsional vibration formulas used in the literature are inaccurate for wide cantilevers. Although the focus of the discussion is on MEMS, the results are applicable to both macro and micro plates of dimensions greater than 100 nm. This is because the analysis was carried out using continuum-based three dimensional finite elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Anderson RG, Irons BM, Zienkiewicz OC (1968) vibration and stability of plates using finite elements. Int J Solids Struct 4:1031–1055

    Article  Google Scholar 

  • Austin RN, Caughpield DA, Plass HJ Jr (1963) Application of Reissner’s variational principle to the vibration analysis of square flat plates with various root support conditions. Dev Theoretical Appl Mech 1:1–24

    Google Scholar 

  • Leissa AW (1969) Vibration of plates, NASA-SP-160, Scientific and Technical Information Division, National Aeronautics And Space Administration, Washington, D.C.

  • Barton MV (1951) Vibration of rectangular and skew cantilever plates. J Appl Mech 18:129–134

    Google Scholar 

  • Beardslee LA, Addous AM, Heinrich S, Josse F, Dufour I, Brand O (2010) Thermal excitation and piezoresistive detection of cantilever in-plane resonance modes for sensing applications. J Microelectromech Syst 19:1015–1017

    Article  Google Scholar 

  • Bhat BB (2000) Curve veering: inherent behaviour of some vibrating systems. Shock Vib 7:241–249

    Article  Google Scholar 

  • Cain RG, Biggs S, Page NW (2000) Force calibration in lateral force microscopy. J Colloid Interface Sci 227:55–65

    Article  Google Scholar 

  • Dawe DJ (1965) A finite element approach to plate vibration problems. Mechanical Eng Sci 7:28–32

    Article  Google Scholar 

  • Dekkers M, Boschker H, vanZalk M, Nguyen M, Nazeer H, Houwman E, Rijnders G (2013) The significance of the piezoelectric coefficient d31, eff determined from cantilever structures. J Micromech Microeng 23:025008

    Article  Google Scholar 

  • DeVoe DL, Pisano AP (1997) Modeling and optimal design of piezoelectric cantilever microactuators. J of Microelectromech Syst 6:266–270

    Article  Google Scholar 

  • Beres DP, Bailey CD (1975) Vibration of skewed cantilever plates and helicoidal shells, NASA CR-2588

  • Reissner E, Stein M (1951) Torsion and transverse bending of cantilever plates, N.A.C.A. Technical Note 236, National Advisory Committee for Aeronautics. Langley Aeronautical Lab, Langley Field, VA, United States

  • Eom K, Park HS, Yoon DS, Kwon T (2011) Nanomechanical resonators and their applications in biological chemical detection: nanomechanics principles. Phys Rep 503:115–163

    Article  Google Scholar 

  • Forchheimer D, Borysov SS, Platz D, Haviland DB (2014) Determining surface properties with bimodal and multimodal AFM. Nanotechnology 25:48570

    Article  Google Scholar 

  • Garcia R, Herruzo ET (2012) The emergence of multifrequency force microscopy. Nat Nanotechnol 7:217–226

    Article  Google Scholar 

  • Giannini O, Sestieri A (2016) Experimental characterization of veering crossing and lock-in in simple mechanical systems. Mech Syst Signal Proc 72–73:846–864

    Article  Google Scholar 

  • Gorman DJ (1976) Free vibration analysis of cantilever plates by the method of superposition. J Sound Vib 49:453–467

    Article  MATH  Google Scholar 

  • Reynen GP (2012) Leveraging eigenvalue veering for improved sensing with microelectromechanical systems, Ph. D. thesis, The University of British Columbia, Vancouver, Canada

  • Green CP, Lioe H, Cleveland JP, Proksch R, Mulvaney P, Sader JE (2004) Normal and torsional spring constants of atomic force microscope cantilevers. Rev Sci Instrum 75:1988–1996

    Article  Google Scholar 

  • Grinsted B (1952) Nodal pattern analysis. Proc Inst Mech Eng ser A 166:309–326

    Article  Google Scholar 

  • Gruter RR, Yang JL, Khan Z, Drechsler U, Paxman R, Despont M, Ndieyira JW, McKendry RA, Dueck B, Bircher BA, Hoogenboom BW (2010) Disentangling mechanical and mass effects on nanomechanical resonators. Appl Phys Lett 96:023113

    Article  Google Scholar 

  • Hsu Tai-Ran (2008) MEMS and microsystems: design, manufacture, and nanoscale engineering, 2nd edn. Wiley, Hoboken (Chapter 7: Materials, for MEMS and Microsystems). ISBN: 9780470083017

    Google Scholar 

  • Saliba HT (1982) Free vibration analysis of rectangular cantilever plates with symmetrically distributed point supports, M.A. Sc. Thesis, University of Ottawa, Canada

  • Hwang I-S, Yang Ch-W, Su P-H, Wu E-T, Liao H-Sh (2013) Imaging soft matters in water with torsional mode atomic force microscopy. Ultramicroscopy 135:121–125

    Article  Google Scholar 

  • Hay J (2009) Quantitative mechanical measurements at the nano-scale using the DCM II, Application note, Agilent technologies. https://www.keysight.com/upload/cmc_upload/All/AN-NanoIndent_092909aFinal.pdf. Accessed June 2018

  • Jesse S, Kalinin SV, Proksch R, Baddorf AP, Rodriguez BJ (2007) The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale. Nanotechnology 18:435503

    Article  Google Scholar 

  • du Bois JL, Adhikari S, Lieven NAJ, Experimental and numerical investigation of mode veering in a stressed structure. In: IMAC XXV: Conference & exposition on structural dynamics—celebrating 25 Years of IMAC, 2007-02-12–2007-02-22

  • duBois JL, Adhikari S, Lieven NAJ (2009) Eigenvalue curve veering in stressed structures: an experimental study. J Sound Vib 322:1117–1124

    Article  Google Scholar 

  • duBois JL, Adhikari S, Lieven NAJ (2011) On the quantification of eigenvalue curve veering a veering index. J Appl Mech 78:041007

    Article  Google Scholar 

  • Johnson BN, Mutharasan R (2011) Persistence of bending and torsional modes in piezoelectric-excited millimeter-sized cantilever (PEMC) sensors in viscous liquids—1 to 103 cP. J Appl Phys 109:066105

    Article  Google Scholar 

  • Johnson BN, Mutharasan R (2012) Biosensing using dynamic-mode cantilever sensors: a review. Biosens Bioelectron 32:1–18

    Article  Google Scholar 

  • Johnson BN, Sharma H, Mutharasan R (2013) Torsional and lateral resonant modes of cantilevers as biosensors: alternatives to bending modes. Anal Chem 85:1760–1766

    Article  Google Scholar 

  • Kausel E, Malischewsky P, Barbosa J (2015) Osculations of spectral lines in a layered medium. Wave Motion 56:22–42

    Article  Google Scholar 

  • Kuttler JR, Sigillito VG (1981) Letter to editor: on curve veering. J Sound Vib 75:585–588

    Article  Google Scholar 

  • Lee JH, Yoon KH, Hwang KS, Park J, Ahn S, Kim TS (2004a) Label free novel electrical detection using micromachined PZT monolithic thin film cantilever for the detection of C-reactive protein. Biosens Bioelectron 20:269–275

    Article  Google Scholar 

  • Lee JH, Yoon KH, Hwang KS, Park J, Ahn S, Kim TS (2004b) Label free novel electrical detection using micromachined PZT monolithic thin film cantilever for the detection of C-reactive protein. Biosens Bioelectron 20:269–275

    Article  Google Scholar 

  • Leissa A (1973) The free vibration of rectangular plates. J Sound Vib 31:257–293

    Article  MATH  Google Scholar 

  • Leissa A (1974) On a curve veering aberration. J Appl Math Phys (ZAMP) 25:99–111

    Article  MATH  Google Scholar 

  • Li WL, Zhang X, Du J, Liu Z (2009) An exact series solution for the transverse vibration of rectangular plates with general elastic boundary supports. J Sound Vib 321:254–269

    Article  Google Scholar 

  • Liu WH, Chen WC (1992) Vibration analysis of skew cantilever plates with stiffeners. J Sound Vib 159:1–11

    Article  MATH  Google Scholar 

  • Looker JR, Sader JE (2008) Flexural resonant frequencies of thin rectangular cantilever plates. J Appl Mech 75:011007

    Article  Google Scholar 

  • Mahmoud MA (2016) Validity and accuracy of resonance shift prediction formulas for microcantilevers: a review and comparative study. Crit Rev Solid State Mater Sci 41:386–429

    Article  Google Scholar 

  • McCarthy EK, Bellew AT, Sader JE, Boland JJ (2014) Poisson’s ratio of individual metal nanowires. Nat Commun 5:4336. https://doi.org/10.1038/ncomms5336

    Article  Google Scholar 

  • Miller DC, Herrmann CF, Maier HJ, George SM, Stoldt CR, Gall K (2007) Thermo-mechanical evolution of multilayer thin films: part I. Mechanical behavior of Au/Cr/Si microcantilevers. Thin Solid Films 515:3208–3223

    Article  Google Scholar 

  • Olkhovets A, Evoy S, Carr DW, Parpia JM, Craighead HG (2000) Actuation and internal friction of torsional nanomechanical silicon resonators. J Vac Sci Technol 18:3549–3551

    Article  Google Scholar 

  • Park HS, Cai W, Espinosa HD, Huang H (2009) Mechanics of crystalline nanowires. MRS Bull 34:178–183

    Article  Google Scholar 

  • Perkins NC, Mote CD Jr (1986) Comments on curve veering in eigenvalue problems. J Sound Vib 106:451–463

    Article  Google Scholar 

  • Petyt M, Fleischer CC (1971) Free vibration of a curved beam. J Sound Vib 18:17–30

    Article  MATH  Google Scholar 

  • Pierre C (1988) Mode localization and eigenvalue loci veering phenomena in disordered structures. J Sound Vib 126:485–502

    Article  Google Scholar 

  • Platz D, Forchheimer D, Tholén EA, Haviland DB (2013) Interpreting motion and force for narrow-band intermodulation atomic force microscopy. Beilstein J Nanotechnol 4:45–56

    Article  Google Scholar 

  • Plunkett R (1963) Natural frequencies of uniform and non-uniform rectangular cantilever plates. J Mech Eng Sci 5:146–156

    Article  Google Scholar 

  • Yahiaoui RA, Bosseboeuf A, Cantilever microbeams: Modelling of the dynamical behaviour and material characterization, 5th. Int. conf on thermal and mechanical simulation and experiments in micro-electronics and micro-systems, EuroSimE2004 (2004) 377-384. https://doi.org/10.1109/esime.2004.1304067

  • Rajalingham C, Bhat RB, Xistris GD (1996) Closed form approximation of vibration modes of rectangular cantilever plates by the variational reduction method. J Sound Vib 197:263–281

    Article  Google Scholar 

  • Raman A, Trigueros S, Cartagena A, Stevenson APZ, Susilo M, Nauman E, Contera SA (2011) Mapping nanomechanical properties of live cells using multiharmonic atomic force microscopy. Nat Nanotechnol 6:809–814

    Article  Google Scholar 

  • Reddy VM, Kumar GVS (2013) Design and analysis of microcantilevers with various shapes using COMSOL Multiphysics software. Int J Emerg Technol Adv Eng 3:294–299

    Google Scholar 

  • Reinstaedtler M, Rabe U, Scherer V, Turner JA, Arnold W (2003) Imaging of flexural and torsional resonance modes of atomic force microscopy cantilevers using optical interferometry. Surf Sci 532–535:1152–1158

    Article  Google Scholar 

  • Rossi RE, Laura PAA (1996) Symmetric and antisymmetric normal modes of a cantilever rectangular plate: effect of Poisson’s ratio and a concentrated mass. J Sound Vib 195:142–148

    Article  Google Scholar 

  • Claassen RW, Thorne CJ (1962) Vibrations of a rectangular cantilever plate, Technical report (U.S. Naval Pacific Missile Test Center), Defense Technical Information Center

  • Morshed S, Prorok BC (2006) Enhancing the mass sensitivity of microcantilever sensors for application in liquid mediums, SEM annual conference & exposition on experimental and applied mechanics. http://semimac.org/wp-content/uploads/2015/11/sem.org-2006-SEM-Ann-Conf-s78p05-Enhancing-Mass-Sensitivity-Microcantilever-Sensors-Application-In.pdf. Accessed June 2018

  • Sakiyama T, Huang M (1998) free vibration analysis of rectangular plates with variable thickness. J Sound Vib 216:379–397

    Article  Google Scholar 

  • Serre C, Perez-Rodriguez A, Morante JR, Gorostiza P, Esteve J (1999) Determination of micromechanical properties of thin films by beam bending measurements with an atomic force microscope. Sens Actuators 74:134–138

    Article  Google Scholar 

  • Solares SD, Chawla G (2010) Triple-frequency intermittent contact atomic force microscopy characterization: simultaneous topographical, phase, and frequency shift contrast in ambient air. J Appl Phys 108:054901

    Article  Google Scholar 

  • Song Y, Bhushan B (2008) Atomic force microscopy dynamic modes: modeling and applications. J Phys 20:225012

    Google Scholar 

  • Timoshenko S, Goodier JN (1951) theory of elasticity, 2nd edn. McGraw-Hill, New York

    MATH  Google Scholar 

  • Tse FS, Morse IE, Hinkle RT (1978) Mechanical vibrations: theory and applications, 2nd edn. Allyn and Bacon, Boston, Mass, USA

    Google Scholar 

  • Pamula VK, Jog A, Fair RB (2001) Mechanical property measurement of thin film gold using thermally actuated bimetallic cantilever beams, Nanotech 2001. Tech Proc 2001 Int Conf Modeling Simul Microsyst 1:410–413

    Google Scholar 

  • Webster JJ (1968) Free vibrations of rectangular curved panels. Int J Mech Sci 10:571–582

    Article  MATH  Google Scholar 

  • Xia X, Li X (2008) Resonance-mode effect on microcantilever mass-sensing performance in air. Rev Sci Instrum 79:074301

    Article  Google Scholar 

  • Xia X, Zhang Z, Li X (2008) A latin-cross-shaped integrated resonant cantilever with second torsion-mode resonance for ultra-resoluble bio-mass sensing. J Micromech Microeng 18:035028

    Article  Google Scholar 

  • Xie H, Vitard J, Haliyo S, Regnier S (2008) Enhanced sensitivity of mass detection using the first torsional mode of microcantilevers. Meas Sci Technol 19:055207

    Article  Google Scholar 

  • Yadav DPS, Sharma AK, Shivhare V (2015) Free vibration analysis of isotropic plate with stiffeners using finite element method. Eng Solid Mech 3:167–176

    Article  Google Scholar 

  • Yang C-W, Hwang I-S (2010) Soft-contact imaging in liquid with frequency-modulation torsion resonance mode atomic force microscopy. Nanotechnology 21:065710

    Article  Google Scholar 

  • Young D (1950) Vibration of rectangular plates by the Ritz method. J Appl Mech 17:448–453

    MATH  Google Scholar 

  • Yurtsever A, Gigler AM, Stark RW (2008) Frequency modulated torsional resonance mode atomic force microscopy on polymers. J Phys 100:052033

    Google Scholar 

  • Zhong Y, Zhao X-F, Li R (2013) Free vibration analysis of rectangular cantilever plates by finite integral transform method. Int J Comput Methods Eng Sci Mech 14:221–226

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

M. A. Mahmoud is a retired professor of Mechanical Engineering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, M.A., Alrahmani, M.A. & Alawadi, H.A. Resonance patterns in cantilevered plates with micro electromechanical systems (MEMS) applications. Microsyst Technol 25, 997–1016 (2019). https://doi.org/10.1007/s00542-018-4052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-4052-6

Navigation