Skip to main content
Log in

Simulation and comparative study on analog/RF and linearity performance of III–V semiconductor-based staggered heterojunction and InAs nanowire(nw) Tunnel FET

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper presents the comparative study on linearity and analog/radio frequency presentation of an III–V staggered hetero-junction nanowire (NW) TFET with Si and InAs based NW TFET of same dimension. The device parameter of analog/RF performance for low power application such as transconductance (gm), output resistance (RO), intrinsic gain (gmR0), cut-off frequency (fT), maximum frequency of oscillation (fmax), gain bandwidth product (GBW), VIP2, VIP3 as well as 1-dB compression point has been explored. There is a better improvement in analog/radio frequency presentation obtained from heterojunction NW TFET over Si and InAs TFET. The result reveals that heterojunction TFET provides superior intrinsic gain, higher cutoff frequency, higher GBW better linearity performance as compared to Si and InAs TFET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Biswas A, Alper C, De Michielis L, Ionescu AM (2012) New tunnel-FET architecture with enhanced Ion and improved millar effect for energy efficient switching. In: Device research conference (DRC), 2012 70th Annual, pp 131–132

  • Chakraborty A, Sarkar A (2015) Investigation of analog/RF performance of staggered hetero-junction based nano wire tunneling field-effect transistor. Superlattices Micro Struct 80:125–135

    Article  Google Scholar 

  • Choi WY, Park B-G, Lee JD, King Liu T-J (2007) Tunneling field -effect transistors (TFETs) with sub threshold swing (SS) less than 60mv/dec. IEEE Electron Dev Lett 28:743–745

    Article  Google Scholar 

  • Ganjipour B, Wallentin J, Borgström MT, Samuelson L, Thelander C (2012) ACS Nano 6:3109–3113

    Article  Google Scholar 

  • Gautam R, Saxena M, Gupta RS, Gupta M (2012) Microelectron Reliab 52:989–994

    Article  Google Scholar 

  • Ghosh P, Haldar S, Gupta RS, Gupta M (2012) An investigation of linearity performance and intermodulation distortion of GME CGT MOSFET for RFIC design. Electron Dev IEEE Trans 59(12):3263–3268

    Article  Google Scholar 

  • Ionescu AM, Riel H (2011) Tunnel field-effect transistors as energy efficient electronic switches. Nature 479(7373):329–337

    Article  Google Scholar 

  • Kaya S, Ma W (2004) Optimization of RF linearity in DG MOSFET. IEEE Electron Dev Lett 25(5):308–310

    Article  Google Scholar 

  • Koswatta SO, Lundstrom MS, Nikonov DE (2009) Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. Electron Dev IEEE Trans 56(3):456–465

    Article  Google Scholar 

  • Koswatta SO, Koester SJ, Haensch W (2010) IEEE Trans Electron Dev 57:3222–3230

  • Kumar SP, Agrawal A, Chaujar R, Gupta RS, Gupta M (2011) Microelectron Reliab 51:587–596

    Article  Google Scholar 

  • Lu H, Seabaugh A (2014) Tunnel field-effect transistors: state-of the-art. IEEE J Electron Dev Soc 2(4):44–49

    Article  Google Scholar 

  • Mallik A, Chattopadhyay A (2012) Electron Dev IEEE Trans 59:888–894.

  • Mohankumar N, Syamal B, Sarkar CK (2010) IEEE Trans Electron Dev 57:820–826

    Article  Google Scholar 

  • Mohata D, Mookerjea S, Agrawal A, Li Y, Mayer T, Narayanan V, Liu A, Loubychev D, Fastenau J, Datta S (2011) Appl Phys Express 4:024105–1–024105-3

    Article  Google Scholar 

  • Mohata D, Rajamohanan B, Mayer T, Hudait M, Fastenau J, Lubyshev D, Liu AWK, Datta S (2012) IEEE Electron Dev Lett 33:1568–1570

    Article  Google Scholar 

  • Mookerjea S, Krishnan R, Datta S, Narayanan V (2009) IEEE Electron Dev Lett 30:1102–1104

    Article  Google Scholar 

  • Pala MG, Esseni D (2013) IEEE Trans Electron Dev 60:2795–2801

  • Sarkar A, Das AK, De S, Sarkar CK (2012) Microelectron J 43:873–882

    Article  Google Scholar 

  • Sedighi B, Hu XS, Liu H, Nahas JJ, Niemier M (2014) Circuits and systems I: regular papers. IEEE Trans (4):1–10

  • Senale-Rodriguez B, Lu Y, Fay P, Jena D, Seabaugh A, Xing HG et al (2012) Perspective of TFETs for low power analog ICs. In: Proceedings IEEE subthreshold microelectronics conference, pp 1–3

  • Shenoy RS, Saraswat KC (2003) Nanotechnol IEEE Trans 2(4):265–270

  • Tomioka K, Yoshimura M, Fukui T (2012) Proc VLSI Symp Technol Dig 47–48

  • Yang Y, Tong X, Yang L-T, Guo P-F, Fan L, Yeo Y-C (2010) Electron Device Lett IEEE 31:752–754

    Article  Google Scholar 

  • Zhao H, Chen Y, Wang Y, Zhou F, Xue F, Lee J (2011) IEEE Trans Electron Dev 58:2990–2995

    Article  Google Scholar 

  • Zhu Y, Jain N, Mohata DK, Datta S, Lubyshev D, Fastenau JM, Liu AK, Hudait MK (2012) Appl Phys Lett 101:112106–1–112106-4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhansu Mohan Biswal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswal, S.M., Baral, B., De, D. et al. Simulation and comparative study on analog/RF and linearity performance of III–V semiconductor-based staggered heterojunction and InAs nanowire(nw) Tunnel FET. Microsyst Technol 25, 1855–1861 (2019). https://doi.org/10.1007/s00542-017-3642-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3642-z

Navigation