Skip to main content
Log in

Design and simulations of a resonant accelerometer

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A resonant accelerometer was designed and simulated in detail. The structure was composed of external frame and internal structure. The internal structure consists of a single proof mass, a pair of resonators and elastic beams. Structure design is implemented by taking advantage of the finite element analyses. From the simulation results we can see that the design of external frame, should ensure that the frame in line with the “beam” characteristics, and increase its stiffness under this condition. The design of internal structure, should ensure that the resonant beam stiffness, sensitivity, vertical vibration and range. Moreover, simulation results reveal the resonant accelerometer linearity is better under the condition of |F| < 5 N, the range is ±25 g and the sensitivity is 272.5 Hz/g. All these simulations above can verify the high performance accelerometer by simple and optimized structure design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Comi C, Corigliano A, Langfelder G (2010) A resonant microaccelerometer with high sensitivity operating in an oscillating circuit. J Microelectromech Syst 19(5):1140–1152

    Article  Google Scholar 

  • Comi C, Corigliano A, Langfelder G (2016) Sensitivity and temperature behavior of a novel z-axis differential resonant micro accelerometer. J Micromech Microeng 26(3):035006

    Article  Google Scholar 

  • Ding H, Zhao J, Ju B-F (2016a) A high-sensitivity biaxial resonant accelerometer with two-stage microleverage mechanisms. J Micromech Microeng 26(1):015011

    Article  Google Scholar 

  • Ding H, Zhao J, Ju B-F (2016b) A new analytical model of single-stage microleverage mechanism in resonant accelerometer. Microsyst Technol Micro Nanosyst Inf Storage Process Syst 22(4):757–766

    Google Scholar 

  • Han J-Q, Feng R-S, Li Y (2013) Microfabrication technology for non-coplanar resonant beams and crab-leg supporting beams of dual-axis bulk micromachined resonant accelerometers. J Zhejiang Univ Sci C Comp Electron 14(1):65–74

    Article  Google Scholar 

  • Heng L, Li MR (2013) Self-oscillation loop design and measurement for an MEMS resonant accelerometer. Int J Adapt Control Signal Process 27(10):859–872

    MathSciNet  MATH  Google Scholar 

  • Li B, Zhao Y, Li C (2017) A differential resonant accelerometer with low cross-interference and temperature drift. Sensors 17(1):178

    Article  Google Scholar 

  • Park U, Rhim J, Jeon JU (2014) A micromachined differential resonant accelerometer based on robust structural design. Microelectron Eng 129(11):5–11

    Article  Google Scholar 

  • Park B, Lee SW, Han KJ (2016) Response characteristics of a MEMS resonant accelerometer to external acoustic excitation. In: 15th IEEE Sensors Conference, Orlando, FL, Oct 30–Nov 03

  • Pedersen CBW, Seshia AA (2004) On the optimization of compliant force amplifier mechanisms for surface micromachined resonant accelerometers. J Micromech Microeng 14(10):1281–1293

    Article  Google Scholar 

  • Seshia AA, Palaniapan M, Roessig TA (2002) A vacuum packaged surface micromachined resonant accelerometer. J Microelectromech Syst 11(6):784–793

    Article  Google Scholar 

  • Shi R, Jia F-X, Qiu A-P (2013) Phase noise analysis of micromechanical silicon resonant accelerometer. Sens Actuators A Phys 197(8):15–24

    Article  Google Scholar 

  • Suminto JT (1996) A wide frequency range, rugged silicon micro accelerometer with overrange stops. MEMS, Sunnyvale, pp 180–185

    Google Scholar 

  • Verma P, Khan KZ, Khonina SN (2016) Ultraviolet-LIGA-based fabrication and characterization of a nonresonant drive-mode vibratory gyro/accelerometer. J Micro Nanolithogr Mems Moems 15(3):035001

    Article  Google Scholar 

  • Wang Y, Ding H, Le X (2017) A MEMS piezoelectric in-plane resonant accelerometer based on aluminum nitride with two-stage microleverage mechanism. Sens Actuators A Phys 254(2):126–133

    Article  Google Scholar 

  • Yan B, Liu Y, Dong J (2016) The optimization of drive and sense circuit in silicon micro-machined resonant accelerometer. In: IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), Nanjing, Peoples Republic of China, 12–14 Aug, pp. 2058–2063

  • Yang B, Dai B, Zhao H (2014) A new silicon triaxial resonant micro-accelerometer. In: International Conference on Information Science, Electronics and Electrical Engineering (ISEEE), Shandong Normal University, Sapporo, Japan, 26–28 Apr, pp. 1282–1285

  • Zhang J, Su Y, Shi Q (2015) Microelectromechanical resonant accelerometer designed with a high sensitivity. Sensors 15(12):30293–30310

    Article  Google Scholar 

  • Zhao L, Dai B, Yang B (2016) Design and simulations of a new biaxial silicon resonant micro-accelerometer. Microsyst Technol Micro Nanosyst Inf Storage Process Syst 22(12):2829–2834

    Google Scholar 

  • Zotov SA, Simon BR, Trusov AA (2015) High quality factor resonant MEMS accelerometer with continuous thermal compensation. IEEE Sens J 15(9):5045–5052

    Article  Google Scholar 

  • Zou X, Seshia AA (2015) A high-resolution resonant mems accelerometer. In: 18th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Anchorage, AK, 21–25 Jun, pp. 1247–1250

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation of China under Grant no. 61503018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Zhan-She.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhan-She, G., Qu, Y. et al. Design and simulations of a resonant accelerometer. Microsyst Technol 24, 1631–1641 (2018). https://doi.org/10.1007/s00542-017-3535-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3535-1

Navigation