Skip to main content
Log in

A CMOS active inductor based digital and analog dual tuned voltage-controlled oscillator

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A fully integrated 600 MHz CMOS active inductor based voltage-controlled oscillator (VCO) is presented. The active floating inductor configuration employs voltage differencing transconductance amplifier as a building block. In the proposed circuit topology, frequency tuning is realized by varying the bias current of the tunable inductor. The designed VCO achieves an output frequency of 450–750 MHz, resulting in the tuning range of 50%. The simulated phase noise lies within −92.37 to −86.16 dBc/Hz at 1 MHz offset and the VCO draws 426.98–1100 µW from a 1 V supply voltage. The proposed RF oscillator is designed and implemented in a 45-nm CMOS process and its performance is estimated using Virtuoso Analog Design Environment of Cadence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Adiseno MN, Ismail M, Olsson H (2002) A wide-band RF front-end for multiband multistandard high-linearity low-IF wireless receivers. IEEE J Solid State Circuits 37(9):1162–1168

    Article  Google Scholar 

  • Arbel AF, Goldminz L (1992) Output stage for current-mode feedback amplifiers, theory and applications. Analog Integr Circuit Signal Process 2(3):243–255

    Article  Google Scholar 

  • Babaei Kia H, Khari A’ain A, Grout I (2014) Wide tuning-range CMOS VCO based on a tunable active inductor. Int J Electron 101(1):88–97

    Article  Google Scholar 

  • Biolek D, Senani R, Biolkova V, Kolka Z (2008) Active elements for analog signal processing: classification, review, and new proposals. Radioengineering 17(4):15–32

    Google Scholar 

  • Fabre A (1992) Gyrator implementation from commercially available trans impedance operational amplifiers. Electron Lett 28(3):263–264

    Article  Google Scholar 

  • Fillaud M and Barthelemy H (2008) Design of a wide tuning range VCO using an active inductor. In: 2008 joint 6th international IEEE Northeast workshop on circuits and systems and TAISA conference, Montreal, QC, pp 13–16

  • Georgescu BA (2003) Spiral inductor Q-enhancement techniques. Ph.D. Dissertation, University of Calgary

  • Grzegorz S, Baldwin G and Farrell R (2007) Wideband 0.18 μm CMOS VCO using active inductor with negative resistance. In: 2007 18th European conference on circuit theory and design, Seville, p 990–993

  • Hajimiri A, Lee TH (1998) A general theory of phase noise in electrical oscillators. IEEE J Solid State Circuits 33(2):179–194

    Article  Google Scholar 

  • Hajimiri A, Lee TH (1999) Design issues in CMOS differential LC oscillators. IEEE J Solid State Circuits 34(5):717–724

    Article  Google Scholar 

  • Hajimiri A, Lee TH (2000) The design of low noise oscillators. Kluwer, Norwell

    Google Scholar 

  • Lawanwisut S, Satthaphol P, Payakkakul K, Pipatthitikorn P, Siripruchyanun M (2016) A temperature-insensitive current-mode multiplier/divider using only double-output VDTA. Proced Comput Sci 86:156–159 (Elsevier)

    Article  Google Scholar 

  • Lee TH (2004) The design of CMOS radio-frequency integrated circuits, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  • Leeson D (1966) A general theory of phase noise in electrical oscillators. Proc IEEE 54:329–330

    Article  Google Scholar 

  • Lin TYK, Payne A (2000) Design of a low-voltage, low-power, wide-tuning integrated oscillator. In: ISCAS 2000, IEEE International symposium on circuits and systems, vol 5, 28–31 May 2000, pp 629–632

  • Nandi R (1980) Lossless inductor simulation: novel configurations using DVCCS. Electron Lett 16(17):666–667

    Article  Google Scholar 

  • Nguyen NM, Meyer RG (1992) Start-up and frequency stability in high-frequency oscillators. IEEE J Solid State Circuits 27(5):810–820

    Article  Google Scholar 

  • Pal K, Nigam MJ (2008) Novel active impedances using current conveyors. J Act Passive Electron Devices 3:29–34

    Google Scholar 

  • Parveen T, Ahmed MT (2006) Simulation of ideal grounded tunable inductor and its application in high quality multifunctional filter. Microelectron J 23(3):9–13

    Article  Google Scholar 

  • Prasad D, Bhaskar DR, Singh AK (2010) New grounded and floating simulated inductance circuits using current differencing transconductance amplifiers”. Radioengineering 19(1):194–198

    Google Scholar 

  • Prasad D, Bhaskar DR, Pushkar KL (2011) Realization of new electronically controllable grounded and floating simulated inductance circuits using voltage differencing differential input buffered amplifiers. Act Passive Electron Compon. doi:10.1155/2011/101432

    Google Scholar 

  • Razavi B (1996) A study of phase noise in CMOS oscillators. IEEE J Solid State Circuits 31(3):331–343

    Article  Google Scholar 

  • Razavi B (1998) RF microelectronics. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Satansup J, Tangsrirat W (2014) Compact VDTA-based current-mode electronically tunable universal filters using grounded capacitors. Microelectron J 45(6):613–618

    Article  Google Scholar 

  • Semiconductor Industry Association (SIA) International Technology Roadmap for Semiconductors (2009) Edition (Online). http://www.itrs2.net/itrs-reports.html. Accessed 20 May 2017

  • Sotner R, Jerabek J, Herencsar N, Petrzela J, Vrba K, Kincl Z (2014) Linearly tunable quadrature oscillator derived from LC Colpitts structure using voltage differencing transconductance amplifier and adjustable current amplifier. Analog Integr Circuit Signal Process 81(1):121–136

    Article  Google Scholar 

  • Tsitouras A, Plessas F, Kalivas G (2011) A linear, ultra-wideband, low-power, 2.1–5 GHz, VCO. Int J Circuit Theory Appl 39:823–833. doi:10.1002/cta.670

    Google Scholar 

  • Yesil A, Kacar F, Kuntman H (2011) New simple CMOS realization of voltage differencing transconductance amplifier and its RF filter application. Radioengineering 20(3):632–637

    Google Scholar 

  • Yuan F (2008) CMOS active inductors and transformers. Springer, New York

    Book  Google Scholar 

  • Yuce E (2008) Grounded inductor simulators with improved low frequency performances. IEEE Trans Instrum Meas 57(5):1079–1084

    Article  Google Scholar 

  • Yuce E, Minaei S, Cicekoglu O (2005) A novel grounded inductor realization using a minimum number of active and passive components. ETRI J 27(4):427–432

    Article  Google Scholar 

  • Yue P, Wong SS (2000) Physical modeling of spiral inductors on silicon. IEEE Trans Electron Devices 47(3):560–568

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikash Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Mehra, R. & Islam, A. A CMOS active inductor based digital and analog dual tuned voltage-controlled oscillator. Microsyst Technol 25, 1571–1583 (2019). https://doi.org/10.1007/s00542-017-3457-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3457-y

Navigation