Skip to main content
Log in

Nonlocal temperature-dependent postbuckling behavior of FG-CNT reinforced nanoshells under hydrostatic pressure combined with heat conduction

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The objective of this paper is to anticipate the size-dependent nonlinear instability response of functionally graded carbon nanotube (FG-CNT) reinforced nanocomposite nanoshells with temperature-dependent material properties under combination of hydrostatic pressure and through-thickness heat conduction. To this purpose, a new size-dependent shell model is constructed based upon implementation of the Eringen’s nonlocal continuum elasticity theory in conjunction with von Karman kinematics nonlinearity into a refined shell theory with exponential function to distribute the shear deformation. In addition to the uniform distribution (UD) of CNT reinforcements, three FG patterns are also considered namely FG-A, FG-V and FG-X. Moreover, the temperature variation due to the through-thickness heat conduction is evaluated using polynomial series. Subsequently, by transforming the problem to a boundary layer-type one and with the aid of a two-stepped perturbation solving process, explicit expressions for nonlocal temperature-dependent load–deflection and load-shortening curves of exponential shear deformable FG-CNT reinforced nanoshells with and without initial geometric imperfection are presented. It is indicated that the reduction in the value of critical buckling pressure due to the nonlocality size effect is more prominent for FG-A distribution pattern in comparison with other ones, especially for thinner FG-CNT reinforced nanoshells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alibeigloo A (2016) Thermoelastic analysis of functionally graded carbon nanotube reinforced composite cylindrical panel embedded in piezoelectric sensor and actuator layers. Compos B Eng 98:225–243

    Article  Google Scholar 

  • Ansari R, Sahmani S (2012) Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models. Commun Nonlinear Sci Numer Simul 17:1965–1979

    Article  MathSciNet  Google Scholar 

  • Ansari R, Sahmani S (2013) Prediction of biaxial buckling behavior of single-layered graphene sheets based on nonlocal plate models and molecular dynamics simulations. Appl Math Model 37:7338–7351

    Article  MathSciNet  Google Scholar 

  • Ansari R, Sahmani S, Arash B (2010) Nonlocal plate model for free vibrations of single-layered graphene sheets. Phys Lett A 375:53–62

    Article  Google Scholar 

  • Donnell LH (1976) Beam, plates and shells. McGraw-Hill, New York, pp 377–445

    Google Scholar 

  • Endo M, Hayashi T, Kim YA, Terrones M, Dresselhaus MS (2004) Applications of carbon nanotubes in the twenty-first century. Philos Trans R Soc Lond A 362:2223–2238

    Article  Google Scholar 

  • Eringen AC (1972) Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci 10:425–435

    Article  MATH  Google Scholar 

  • Fantuzzi N, Tornabene F, Bacciocchi M, Dimitri R (2016) Free vibration analysis of arbitrarily shaped functionally graded carbon nanotube reinforced plates. Compos Part B Eng. doi:10.1016/j.compositesb.2016.09.021

    Google Scholar 

  • Griebel M, Hamaekers J (2004) Molecular dynamics simulations of the elastic moduli of polymer–carbon nanotube composites. Comput Methods Appl Mech Eng 193:1773–1788

    Article  MathSciNet  MATH  Google Scholar 

  • Han Y, Elliott J (2007) Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput Mater Sci 39:315–323

    Article  Google Scholar 

  • Hosseini-Hashemi Sh, Fadaee M, Es’haghi M (2010) A novel approach for in-plane/out-of-plane frequency analysis of functionally graded circular/annular plates. Int J Mech Sci 52:1025–1035

    Article  Google Scholar 

  • Jooybar N, Malekzadeh P, Fiouz A (2016) Vibration of functionally graded carbon nanotubes reinforced composite truncated conical panels with elastically restrained against rotation edges in thermal environment. Compos B Eng 106:242–261

    Article  Google Scholar 

  • Juntarasaid C, Pulngern T, Chucheepsakul S (2012) Bending and buckling of nanowires including the effects of surface stress and nonlocal elasticity. Phys E 46:68–76

    Article  Google Scholar 

  • Karlicic D, Adhikari S, Murmu T, Cajic M (2014) Exact closed-form solution for non-local vibration and biaxial buckling of bonded multi-nanoplate system. Compos B Eng 66:328–339

    Article  Google Scholar 

  • Lei ZX, Zhang LW, Liew KM (2016) Buckling analysis of CNT reinforced functionally graded laminated composite plates. Compos Struct 152:62–73

    Article  Google Scholar 

  • Li L, Hu Y (2015) Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. Int J Eng Sci 97:84–94

    Article  MathSciNet  Google Scholar 

  • Lim CW, Yang Q, Zhang JB (2012) Thermal buckling of nanorod based on non-local elasticity theory. Int J Non Linear Mech 47:496–505

    Article  Google Scholar 

  • Mirfakhraei P, Redekop D (1998) Buckling of circular cylindrical shells by the differential quadrature method. Int J Press Vessels Pip 75:347–353

    Article  Google Scholar 

  • Murmu T, Pradhan SC (2009) Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM. Phys E 41:1232–1239

    Article  Google Scholar 

  • Reddy JN (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45:288–307

    Article  MATH  Google Scholar 

  • Sahmani S, Aghdam MM (2017a) Nonlinear instability of hydrostatic pressurized hybrid FGM exponential shear deformable nanoshells based on nonlocal continuum elasticity. Compos B Eng 114:404–417

    Article  Google Scholar 

  • Sahmani S, Aghdam MM (2017b) Size dependency in axial postbuckling behavior of hybrid FGM exponential shear deformable nanoshells based on the nonlocal elasticity theory. Compos Struct 166:104–113

    Article  Google Scholar 

  • Sahmani S, Bahrami M, Aghdam MM (2016a) Surface stress effects on the nonlinear postbuckling characteristics of geometrically imperfect cylindrical nanoshells subjected to axial compression. Int J Eng Sci 99:92–106

    Article  MathSciNet  Google Scholar 

  • Sahmani S, Aghdam MM, Bahrami M (2016b) Size-dependent axial buckling and postbuckling characteristics of cylindrical nanoshells in different temperatures. Int J Mech Sci 107:170–179

    Article  Google Scholar 

  • Sahmani S, Aghdam MM, Akbarzadeh AH (2016c) Size-dependent buckling and postbuckling behavior of piezoelectric cylindrical nanoshells subjected to compression and electrical load. Mater Des 105:341–351

    Article  Google Scholar 

  • Sankar A, El-Borgi S, Ben Zineb T, Ganapathi M (2016) Dynamic snap-through buckling of CNT reinforced composite sandwich spherical caps. Compos B Eng 99:472–482

    Article  Google Scholar 

  • Sarvestani HY, Ghayoor H (2016) Free vibration analysis of curved nanotube structures. Int J Non Linear Mech 86:167–173

    Article  Google Scholar 

  • Sharma A, Kumar A, Susheel CK, Kumar R (2016) Smart damping of functionally graded nanotube reinforced composite rectangular plates. Compos Struct 155:29–44

    Article  Google Scholar 

  • Shen H-S (2011) Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part II: pressure-loaded shells. Compos Struct 93:2496–2503

    Article  Google Scholar 

  • Shen H-S, Noda N (2007) Postbuckling of pressure-loaded FGM hybrid cylindrical shells in thermal environments. Compos Struct 77:546–560

    Article  Google Scholar 

  • Shen H-S, Xiang Y (2013) Postbuckling of nanotube-reinforced composite cylindrical shells under combined axial and radial mechanical loads in thermal environment. Compos B Eng 52:311–322

    Article  Google Scholar 

  • Simsek M, Yurtcu HH (2013) Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory. Compos Struct 97:378–386

    Article  Google Scholar 

  • Song YS, Youn JR (2006) Modeling of effective elastic properties for polymer based carbon nanotube composites. Polymer 47:1741–1748

    Article  Google Scholar 

  • Song ZG, Zhang LW, Liew KM (2016) Vibration analysis of CNT-reinforced functionally graded composite cylindrical shells in thermal environments. Int J Mech Sci 115–116:339–347

    Article  Google Scholar 

  • Thai H-T, Vo TP (2012) A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams. Int J Eng Sci 54:58–66

    Article  MathSciNet  Google Scholar 

  • Tornabene F, Fantuzzi N, Bacciocchi M, Viola E (2016a) Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells. Compos B Eng 89:187–218

    Article  Google Scholar 

  • Tornabene F, Fantuzzi N, Bacciocchi M (2016) Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes. Compos Part B Eng doi:10.1016/j.compositesb.2016.07.011

    Google Scholar 

  • Wang CM, Zhang H, Challamel N, Duan WH (2017) On boundary conditions for buckling and vibration of nonlocal beams. Eur J Mech A/Solids 61:73–81

  • Wu HL, Yang J, Kitipornchai S (2016) Imperfection sensitivity of postbuckling behaviour of functionally graded carbon nanotube-reinforced composite beams. Thin Walled Struct 108:225–233

    Article  Google Scholar 

  • Yan Y, Wang WQ, Zhang LX (2010) Nonlocal effect on axially compressed buckling of triple-walled carbon nanotubes under temperature field. Appl Math Model 34:3422–3429

    Article  MathSciNet  MATH  Google Scholar 

  • Yang Q, Lim CW (2012) Thermal effects on buckling of shear deformable nanocolumns with von Kármán nonlinearity based on nonlocal stress theory. Nonlinear Anal Real World Appl 13:905–922

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Z, Wang CM, Challamel N (2014) Eringen’s length scale coefficient for buckling of nonlocal rectangular plates from microstructured beam-grid model. Int J Solids Struct 51:4307–4315

    Article  Google Scholar 

  • Zhang LW, Liu WH, Liew KM (2016a) Geometrically nonlinear large deformation analysis of triangular CNT-reinforced composite plates. Int J Non Linear Mech 86:122–132

    Article  Google Scholar 

  • Zhang LW, Liew KM, Reddy JN (2016b) Postbuckling of carbon nanotube reinforced functionally graded plates with edges elastically restrained against translation and rotation under axial compression. Comput Methods Appl Mech Eng 298:1–28

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sahmani.

Appendices

Appendix A

$$ \begin{aligned} \varphi_{1} = \frac{{A_{11}^{*} }}{{\left( {A_{11}^{*} } \right)^{2} - \left( {A_{12}^{*} } \right)^{2} }}, \varphi_{2} = \frac{{A_{12}^{*} }}{{\left( {A_{11}^{*} } \right)^{2} - \left( {A_{12}^{*} } \right)^{2} }}, \varphi_{3} = \frac{{A_{11}^{*} B_{11}^{*} - A_{12}^{*} B_{12}^{*} }}{{\left( {A_{11}^{*} } \right)^{2} - \left( {A_{12}^{*} } \right)^{2} }} \hfill \\ \varphi_{4} = \frac{{A_{11}^{*} B_{12}^{*} - A_{12}^{*} B_{11}^{*} }}{{\left( {A_{11}^{*} } \right)^{2} - \left( {A_{12}^{*} } \right)^{2} }}, \varphi_{5} = \frac{{A_{11}^{*} B_{11}^{**} - A_{12}^{*} B_{12}^{**} }}{{\left( {A_{11}^{*} } \right)^{2} - \left( {A_{12}^{*} } \right)^{2} }}, \varphi_{6} = \frac{{A_{11}^{*} B_{12}^{**} - A_{12}^{*} B_{11}^{**} }}{{\left( {A_{11}^{*} } \right)^{2} - \left( {A_{12}^{*} } \right)^{2} }} \hfill \\ \varphi_{7} = \frac{1}{{A_{66}^{*} }} , \varphi_{8} = \frac{{B_{66}^{*} }}{{A_{66}^{*} }} , \varphi_{9} = \frac{{B_{66}^{**} }}{{A_{66}^{*} }} \hfill \\ \varphi_{10} = D_{11}^{*} - B_{11}^{*} \varphi_{3} - B_{12}^{*} \varphi_{4} , \varphi_{11} = D_{12}^{*} - B_{11}^{*} \varphi_{3} - B_{12}^{*} \varphi_{4} \hfill \\ \varphi_{12} = D_{66}^{*} - B_{66}^{*} \varphi_{8} , \varphi_{13} = B_{11}^{*} \varphi_{5} + B_{12}^{*} \varphi_{6} - D_{11}^{**} \hfill \\ \varphi_{14} = B_{12}^{*} \varphi_{5} + B_{11}^{*} \varphi_{6} - D_{12}^{*} , \varphi_{15} = B_{66}^{**} \varphi_{9} - D_{66}^{**} \hfill \\ \varphi_{16} = B_{11}^{**} \varphi_{3} + B_{12}^{**} \varphi_{4} - D_{11}^{**} , \varphi_{17} = B_{12}^{**} \varphi_{3} + B_{11}^{**} \varphi_{4} - D_{12}^{**} \hfill \\ \varphi_{18} = B_{66}^{**} \varphi_{8} - D_{66}^{** } , \varphi_{19} = G_{66}^{*} - B_{66}^{**} \varphi_{9} \hfill \\ \end{aligned} $$
(40)

This point should be noted that the parameters of \( \vartheta_{i} (i = 1, \ldots ,19) \) are the dimensionless form of \( \varphi_{i} \).

The solutions in asymptotic forms for each of independent variables are extracted as below

$$ \begin{aligned} W = {\mathcal{A}}_{00}^{\left( 0 \right)} + \varepsilon^{3/2} \left[ {{\mathcal{A}}_{00}^{(3/2)} - {\mathcal{A}}_{00}^{(3/2)} \left( {\sin \left( {\frac{{\varGamma_{1} X}}{\sqrt \epsilon }} \right) + { \cos }\left( {\frac{{\varGamma_{1} X}}{\sqrt \epsilon }} \right)} \right)e^{{ - \frac{{\varGamma_{2} X}}{\sqrt \epsilon }}} - {\mathcal{A}}_{00}^{(3/2)} \left( {\sin \left( {\frac{{\varGamma_{1} \left( {\pi - X} \right)}}{\sqrt \epsilon }} \right) + { \cos }\left( {\frac{{\varGamma_{1} \left( {\pi - X} \right)}}{\sqrt \epsilon }} \right)} \right)e^{{ - \frac{{\varGamma_{2} \left( {\pi - X} \right)}}{\sqrt \epsilon }}} } \right] + \varepsilon^{2} \left[ {{\mathcal{A}}_{00}^{\left( 2 \right)} + {\mathcal{A}}_{11}^{\left( 2 \right)} \sin \left( {mX} \right)\sin \left( {nY} \right) - {\mathcal{A}}_{00}^{(2)} \left( {\sin \left( {\frac{{\varGamma_{1} X}}{\sqrt \epsilon }} \right) + { \cos }\left( {\frac{{\varGamma_{1} X}}{\sqrt \epsilon }} \right)} \right)e^{{ - \frac{{\varGamma_{2} X}}{\sqrt \epsilon }}} - {\mathcal{A}}_{00}^{(2)} \left( {\sin \left( {\frac{{\varGamma_{1} \left( {\pi - X} \right)}}{\sqrt \epsilon }} \right) + { \cos }\left( {\frac{{\varGamma_{1} \left( {\pi - X} \right)}}{\sqrt \epsilon }} \right)} \right)e^{{ - \frac{{\varGamma_{2} \left( {\pi - X} \right)}}{\sqrt \epsilon }}} } \right] \hfill \\ + \varepsilon^{3} \left[ {{\mathcal{A}}_{00}^{\left( 3 \right)} + {\mathcal{A}}_{11}^{\left( 3 \right)} \sin \left( {mX} \right)\sin \left( {nY} \right)} \right] \hfill \\ + \varepsilon^{4} \left[ {{\mathcal{A}}_{00}^{\left( 4 \right)} + {\mathcal{A}}_{11}^{\left( 4 \right)} \sin \left( {mX} \right)\sin \left( {nY} \right) + {\mathcal{A}}_{20}^{\left( 4 \right)} \cos \left( {2mX} \right) + {\mathcal{A}}_{02}^{(4)} { \cos }(2nY)} \right] + O\left( {\varepsilon^{5} } \right) \hfill \\ \end{aligned} $$
(41)
$$ \begin{aligned} F = - {\mathcal{B}}_{00}^{(0)} \left( {\beta^{2} X^{2} + \frac{{Y^{2} }}{2}} \right) + \epsilon \left[ { - {\mathcal{B}}_{00}^{(1)} \left( {\beta^{2} X^{2} + \frac{{Y^{2} }}{2}} \right)} \right] \hfill \\ + \varepsilon^{2} \left[ { - {\mathcal{B}}_{00}^{(2)} \left( {\beta^{2} X^{2} + \frac{{Y^{2} }}{2}} \right) + {\mathcal{B}}_{11}^{(2)} \sin \left( {mX} \right)\sin \left( {nY} \right)} \right] \hfill \\ + \varepsilon^{5/2} \left[ {{\mathcal{A}}_{00}^{(3/2)} \left( {{\fancyscript{b}}_{10}^{(2)} \sin \left( {\frac{{\varGamma_{1} X}}{\sqrt \epsilon }} \right) + {\fancyscript{b}}_{01}^{(2)} { \cos }\left( {\frac{{\varGamma_{1} X}}{\sqrt \epsilon }} \right)} \right)e^{{ - \frac{{\varGamma_{2} X}}{\sqrt \epsilon }}} + {\mathcal{A}}_{00}^{(3/2)} \left( {{\fancyscript{b}}_{10}^{(2)} \sin \left( {\frac{{\varGamma_{1} \left( {\pi - X} \right)}}{\sqrt \epsilon }} \right) + {\fancyscript{b}}_{01}^{(2)} { \cos }\left( {\frac{{\varGamma_{1} \left( {\pi - X} \right)}}{\sqrt \epsilon }} \right)} \right)e^{{ - \frac{{\varGamma_{2} \left( {\pi - X} \right)}}{\sqrt \epsilon }}} } \right] \hfill \\ + \varepsilon^{3} \left[ { - {\mathcal{B}}_{00}^{(3)} \left( {\beta^{2} X^{2} + \frac{{Y^{2} }}{2}} \right) + {\mathcal{A}}_{00}^{(2)} \left( {{\fancyscript{b}}_{10}^{(3)} \sin \left( {\frac{{\varGamma_{1} X}}{\sqrt \epsilon }} \right) + {\fancyscript{b}}_{01}^{(3)} { \cos }\left( {\frac{{\varGamma_{1} X}}{\sqrt \epsilon }} \right)} \right)e^{{ - \frac{{\varGamma_{2} X}}{\sqrt \epsilon }}} + {\mathcal{A}}_{00}^{(2)} \left( {{\fancyscript{b}}_{10}^{(3)} \sin \left( {\frac{{\varGamma_{1} \left( {\pi - X} \right)}}{\sqrt \epsilon }} \right) + {\fancyscript{b}}_{01}^{(3)} { \cos }\left( {\frac{{\varGamma_{1} \left( {\pi - X} \right)}}{\sqrt \epsilon }} \right)} \right)e^{{ - \frac{{\varGamma_{2} \left( {\pi - X} \right)}}{\sqrt \epsilon }}} } \right] \hfill \\ + \varepsilon^{4} \left[ { - {\mathcal{B}}_{00}^{\left( 4 \right)} \left( {\beta^{2} X^{2} + \frac{{Y^{2} }}{2}} \right) + {\mathcal{B}}_{20}^{(4)} \cos \left( {2mX} \right) + {\mathcal{B}}_{02}^{(4)} \cos \left( {2nY} \right)} \right] + O\left( {\varepsilon^{5} } \right) \hfill \\ \end{aligned} $$
(42)
$$ \begin{aligned} \varPsi_{X} = \varepsilon^{2} \left[ {{\mathcal{C}}_{11}^{\left( 2 \right)} \cos \left( {mX} \right){ \sin }\left( {nY} \right) + \left( {c_{10}^{(2)} \sin \left( {\frac{{\varGamma_{1} X}}{\sqrt \epsilon }} \right) + c_{01}^{(2)} \cos \left( {\frac{{\varGamma_{1} X}}{\sqrt \epsilon }} \right)} \right)e^{{ - \frac{{\varGamma_{2} X}}{\sqrt \epsilon }}} + \left( {c_{10}^{(2)} \sin \left( {\frac{{\varGamma_{1} \left( {\pi - X} \right)}}{\sqrt \epsilon }} \right) + c_{01}^{(2)} \cos \left( {\frac{{\varGamma_{1} \left( {\pi - X} \right)}}{\sqrt \epsilon }} \right)} \right)e^{{ - \frac{{\varGamma_{2} \left( {\pi - X} \right)}}{\sqrt \epsilon }}} } \right] \hfill \\ + \varepsilon^{3} \left[ {{\mathcal{C}}_{11}^{\left( 3 \right)} \cos \left( {mX} \right){ \sin }\left( {nY} \right)} \right] + \varepsilon^{4} \left[ {{\mathcal{C}}_{11}^{\left( 4 \right)} \cos \left( {mX} \right){ \sin }\left( {nY} \right) + {\mathcal{C}}_{20}^{\left( 4 \right)} { \sin }\left( {2mX} \right)} \right] + O\left( {\varepsilon^{5} } \right) \hfill \\ \end{aligned} $$
(43)
$$ \varPsi_{Y} = \varepsilon^{2} \left[ {{\mathcal{D}}_{11}^{(2)} \sin \left( {mX} \right){ \cos }(nY)} \right] + \varepsilon^{3} \left[ {{\mathcal{D}}_{11}^{\left( 3 \right)} \sin \left( {mX} \right){ \cos }\left( {nY} \right)} \right] + \varepsilon^{4} \left[ {{\mathcal{D}}_{11}^{\left( 4 \right)} \sin \left( {mX} \right){ \cos }\left( {nY} \right) + {\mathcal{D}}_{02}^{\left( 4 \right)} \sin \left( {2nY} \right)} \right] + O\left( {\varepsilon^{5} } \right) $$
(44)

in which

$$ \varGamma_{1} = \sqrt {\frac{{\sqrt {\frac{1}{{\vartheta_{1} \vartheta_{10} + \vartheta_{4}^{2} }}} + \frac{{\vartheta_{4} }}{{\vartheta_{1} \vartheta_{10} + \vartheta_{4}^{2} }}}}{2}} , \varGamma_{2} = \sqrt {\frac{{\sqrt {\frac{1}{{\vartheta_{1} \vartheta_{10} + \vartheta_{4}^{2} }}} - \frac{{\vartheta_{4} }}{{\vartheta_{1} \vartheta_{10} + \vartheta_{4}^{2} }}}}{2}} $$
(45)

Appendix B

$$ {\mathcal{P}}_{q}^{(0)} = {\mathcal{U}}_{0} {\mathcal{U}}_{1} {\mathcal{U}}_{8} + {\mathcal{U}}_{2} {\mathcal{U}}_{8} \varepsilon^{2} $$
(46)
$$ \begin{aligned} {\mathcal{P}}_{q}^{(2)} = 8{\mathcal{U}}_{1} {\mathcal{U}}_{3} {\mathcal{U}}_{7} {\mathcal{U}}_{8} + \frac{{8{\mathcal{U}}_{1} {\mathcal{U}}_{3} {\mathcal{U}}_{8} \left( {{\mathcal{U}}_{0} {\mathcal{U}}_{1} {\mathcal{U}}_{6} {\mathcal{U}}_{8} H_{20} + {\mathcal{U}}_{0} {\mathcal{U}}_{3} {\mathcal{U}}_{5} H_{20} } \right)}}{{{\mathcal{U}}_{0} {\mathcal{U}}_{1} {\mathcal{U}}_{8} H_{20} - {\mathcal{U}}_{5} }} + \frac{{8{\mathcal{U}}_{1} {\mathcal{U}}_{3} \left( {{\mathcal{U}}_{0} {\mathcal{U}}_{6} + {\mathcal{U}}_{0}^{2} {\mathcal{U}}_{3} H_{20} } \right)}}{{{\mathcal{U}}_{0} {\mathcal{U}}_{1} {\mathcal{U}}_{8} H_{20} - {\mathcal{U}}_{5} }} \hfill \\ + \frac{{8{\mathcal{U}}_{0} {\mathcal{U}}_{1} {\mathcal{U}}_{3} ({\mathcal{U}}_{6} + {\mathcal{U}}_{0} {\mathcal{U}}_{3} )}}{{{\mathcal{U}}_{0} {\mathcal{U}}_{1} {\mathcal{U}}_{8} - {\mathcal{U}}_{5} }} + 16{\mathcal{U}}_{0} {\mathcal{U}}_{3} {\mathcal{U}}_{4} {\mathcal{U}}_{8} \hfill \\ \end{aligned} $$
(47)
$$ \delta_{q}^{(0)} = \left[ {\frac{{\vartheta_{1} }}{2} - \vartheta_{2} + \left( {\frac{{\left( {2\vartheta_{1} \vartheta_{2} - \vartheta_{2}^{2} } \right)\varGamma_{2} }}{{\pi \vartheta_{1} \left( {\varGamma_{1}^{2} + \varGamma_{2}^{2} } \right)}}} \right)\varepsilon^{1/2} } \right]{\mathcal{P}}_{q} + \left[ {\left( {\frac{{3^{1/4} \left( {\varGamma_{1}^{2} + \varGamma_{2}^{2} } \right)\left( {2\vartheta_{1} - \vartheta_{2} } \right)^{2} }}{{6\pi \varGamma_{2} }}} \right)\epsilon } \right]{\mathcal{P}}_{q}^{2} $$
(48)
$$ \delta_{q}^{(2)} = \left[ {\frac{{3^{3/4} m^{2} }}{32}} \right]\varepsilon^{ - 3/2} $$
(49)
$$ \delta_{q}^{T} = \left( {\frac{{3^{3/4} }}{4}\frac{{\alpha_{11} R\Delta T}}{h}} \right)\varepsilon^{1/2} $$
(50)

where

$$ H_{11} = 1 + \pi^{2} {\mathcal{G}}^{2} \left( {m^{2} + \beta^{2} n^{2} } \right) , H_{20} = 1 + 4\pi^{2} {\mathcal{G}}^{2} m^{2} $$
(51)

where \( {\mathcal{U}}_{i} (i = 0, \ldots ,8) \) are constant parameters extracted via the perturbation sets of equations.

$$ {\mathcal{S}}_{1} = - \left[ {\left( {2\vartheta_{1} - \vartheta_{2} } \right)\left( {{\mathcal{P}}_{q}^{\left( 2 \right)} } \right)} \right] $$
(52)
$$ {\mathcal{S}}_{2} = - \left( {2\vartheta_{1} - \vartheta_{2} } \right)\left( {{\mathcal{P}}_{q}^{\left( 0 \right)} } \right) + \left( {\frac{{\alpha_{22} R\Delta T}}{h}} \right)\epsilon $$
(53)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fattahi, A.M., Sahmani, S. Nonlocal temperature-dependent postbuckling behavior of FG-CNT reinforced nanoshells under hydrostatic pressure combined with heat conduction. Microsyst Technol 23, 5121–5137 (2017). https://doi.org/10.1007/s00542-017-3377-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3377-x

Navigation