Skip to main content
Log in

Analysis of misaligned journal bearing with herringbone grooves: consideration of anisotropic slips

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The effects of anisotropic slip on the lubrication performance of misaligned journal bearings with herringbone grooves are discussed in this study. The modified Reynolds equation, which considered the anisotropic slips, and film thickness equation in misaligned bearings are solved numerically by the finite element method (FEM). The effects of misaligned angle and anisotropic slip on the load capacities and friction force of journal bearings are analyzed. The results show that the existence of slip boundary conditions can dilute the effects of misalignment for journal bearings. Finally, the effects of moment position and dimensionless pressure on the bearing are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\(b\) :

Length of journal bearing (m)

\(b_{ix}\) :

Slip length of ith surface in the x-direction (m)

\(b_{iy}\) :

Slip length of ith surface in the y-direction (m)

\(B\) :

Dimensionless slip length of surface

\(B_{ix}\) :

Dimensionless slip length of ith surface in the x-direction (\(= {{b_{ix} } \mathord{\left/ {\vphantom {{b_{ix} } c}} \right. \kern-0pt} c}\))

\(B_{iy}\) :

Dimensionless slip length of ith surface in the y-direction (\(= {{b_{iy} } \mathord{\left/ {\vphantom {{b_{iy} } c}} \right. \kern-0pt} c}\))

\(c\) :

Concentric clearance (m)

\(c_{g}\) :

Groove depth (m)

\(d\) :

Diameter of journal bearing (m)

\(e\) :

Eccentricity (m)

\(f\) :

Coefficient of frication (\(= {{f_{s} } \mathord{\left/ {\vphantom {{f_{s} } w}} \right. \kern-0pt} w}\))

\(f_{s}\) :

Frication force

\(F_{i}\) :

Dimensionless load capacity of i component

\(F_{s}\) :

Dimensionless frication force (\(= {T \mathord{\left/ {\vphantom {T r}} \right. \kern-0pt} r} = \int_{ - 1}^{1} {\int_{0}^{2\pi } { \, \bar{\tau }_{\text{zx}} \, dXdY} }\))

\(h\) :

Film thickness (m)

\(H\) :

Dimensionless film thickness (\(= {h \mathord{\left/ {\vphantom {h c}} \right. \kern-0pt} c}\))

\(H_{0}\) :

Dimensionless film thickness of well-aligned

\(\dot{m}_{i}\) :

The mass flow rate in the i-direction

\(M\) :

Dimensionless misalignment moment

\(M_{i}\) :

Dimensionless misalignment moment of i component

\(p\) :

Pressure (N/m2)

\(P\) :

Dimensionless pressure (\(= \frac{{pc^{2} }}{{\eta_{0} u_{b} r}}\))

\(Q_{ci}\) :

The Couette flow rate corrector in the i-direction

\(Q_{pi}\) :

The Poiseuille flow rate corrector in the i-direction

\(r\) :

Radius of journal bearing (m)

\(t\) :

Time (s)

\(u\) :

The velocity in the x-direction (m/s)

\(u_{b}\) :

Rotating velocity of the journal bearing (m/s)

\(u_{ix}\) :

Translational velocity of ith surface in the x-direction (m/s)

\(v\) :

The velocity in the y-direction (m/s)

\(v_{iy}\) :

Translational velocity of ith surface in the y-direction (m/s)

\(V_{i}\) :

The slide surface velocity in i-direction

\(w\) :

Load capacity (N)

\(W\) :

Dimensionless load capacity (\(= \sqrt {F_{x}^{2} + F_{y}^{2} }\))

\(W_{0}\) :

Dimensionless load capacity of no-slip and well-aligned

\(x\) :

The circumferential coordinate in the x-direction

\(y\) :

The circumferential coordinate in the y-direction

\(Y\) :

Dimensionless circumferential coordinate in the y-direction (\(= {y \mathord{\left/ {\vphantom {y {{\raise0.7ex\hbox{$b$} \!\mathord{\left/ {\vphantom {b 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}}}} \right. \kern-0pt} {{\raise0.7ex\hbox{$b$} \!\mathord{\left/ {\vphantom {b 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}}}\))

\(z\) :

The circumferential coordinate in the z-direction

\(\beta\) :

Angle of groove

\(\varepsilon\) :

Eccentricity ratio

\(\eta\) :

Groove depth

\(\theta\) :

Dimensionless circumferential coordinate in the x-direction (\(= {x \mathord{\left/ {\vphantom {x r}} \right. \kern-0pt} r}\))

\(\theta_{i}\) :

The misaligned angle rotates about the i axis

\(\varTheta_{i}\) :

Dimensionless misaligned angle rotates about the i axis (\(= {{b\theta_{i} } \mathord{\left/ {\vphantom {{b\theta_{i} } c}} \right. \kern-0pt} c}\))

\(\mu\) :

Viscosity (Pa–s)

\(\mu_{0}\) :

Zero order component of \(\mu\)

\(\rho\) :

Density (kg/m3)

\(\tau_{zx}\) :

Shear stress \(\left(= \left. {\mu \frac{\partial u}{\partial z}} \right|_{z = 0}\right)\) (Pa)

\(\bar{\tau }_{zx}\) :

Dimensionless shear stress (\(= \frac{c}{{\mu u_{b} }}\tau_{zx}\))

\(\varPhi\) :

Attitude angle

\(\xi \cdot P^{ - }\) :

Penalty function

References

  • Asada T, Saito H, Asaida Y, Itoh K (2002) Design of hydrodynamic bearings for high-speed HDD. Microsyst Technol 8(2):220–226

    Article  Google Scholar 

  • Bazant MZ, Vinogradova OI (2008) Tensorial hydrodynamic slip. J Fluid Mech 613:125–134

    Article  MathSciNet  MATH  Google Scholar 

  • Belyaev AV, Vinogradova OI (2010) Effective slip in pressure-driven flow past super-hydrophobic stripes. J Fluid Mech 652:489–499

    Article  MATH  Google Scholar 

  • Boedo S, Booker JF (2004) Classic bearing misalignment and edge loading: a numerical study of limiting cases. J Tribol Trans ASME 126(3):535–541

    Article  Google Scholar 

  • Bouyer J, Fillon M (2002) An experimental analysis of misalignment effects on hydrodynamic plain journal bearing performances. J Tribol Trans ASME 124(2):313–319

    Article  Google Scholar 

  • Bouyer J, Fillon M (2003) Improvement of the THD performance of a misaligned plain journal bearing. J Tribol Trans ASME 125(2):334–342

    Article  Google Scholar 

  • Brizmera V, Kligermana Y, Etsiona I (2003) A laser surface textured parallel thrust bearing. Tribol Trans 46(3):397–403

    Article  Google Scholar 

  • Buckholz RH, Lin JF (1986) The effect of journal bearing misalignment on load and cavitation for non-Newtonian lubricants. J Tribol Trans ASME 108(4):645–654

    Article  Google Scholar 

  • Chen F, Zhang D, Yang Q, Wang X, Dai B, Li X, Hao X, Ding Y, Si J, Hou X (2010) Anisotropic wetting on microstrips surface fabricated by femtosecond laser. Langmuir 27(1):359–365

    Article  Google Scholar 

  • Chen CY, Chung CJ, Wu BH, Li WL, Chien CW, Wu PH, Cheng CW (2012) Microstructure and lubricating property of ultrafast laser pulse textured silicon carbide seals. Appl Phys A Mater Sci Process 107(2):345–350

    Article  Google Scholar 

  • Chen CY, Chen QD, Li WL (2013) Characteristics of journal bearings with anisotropic slip. Tribol Int 61:144–155

    Article  Google Scholar 

  • Chu LM, Li WL, Shen RW, Tsai TI (2009) Dynamic characteristics of grooved air bearings in microsystems. Proc Inst Mech Eng Part J J Eng Tribol 223:895–908

    Article  Google Scholar 

  • Das S, Guha SK, Chattopadhyay AK (2002) On the steady-state performance of misaligned hydrodynamic journal bearings lubricated with micropolar fluids. Tribol Int 35(4):201–210

    Article  Google Scholar 

  • Hamrock BJ, Schmid SR, Jacobson BO (2004) Fundamentals of fluid film lubrication, chapter 10, section 3, 2nd edn. Marcel Dekker Inc, New York City

    Book  Google Scholar 

  • Hirayama T, Yamaguchi N, Sakai S, Hishida N, Matsuoka T, Yabe H (2009) Optimization of groove dimensions in herringbone-grooved journal bearings for improved repeatable run-out characteristics. Tribol Int 42(5):675–681

    Article  Google Scholar 

  • Jang GH, Chang DI (2000) Analysis of a hydrodynamic herringbone grooved journal bearing considering cavitation. J Tribol Trans ASME 122(1):103–109

    Article  Google Scholar 

  • Jang JY, Khonsari MM (2010) On the behavior of misaligned journal bearings based on mass-conservative thermohydrodynamic analysis. J Tribol Trans ASME 132(1):011702

    Article  Google Scholar 

  • Jang JY, Khonsari MM (2015) On the characteristics of misaligned journal bearings. Lubricants 3(1):27–53

    Article  Google Scholar 

  • Jang GH, Yoon JW (2002) Dynamic characteristics of a coupled journal and thrust hydrodynamic bearing in a HDD spindle system due to its groove location. Microsyst Technol 8(4):261–270

    Article  Google Scholar 

  • Jang GH, Lee SH, Kim HW (2006) Finite element analysis of the coupled journal and thrust bearing in a computer hard disk drive. J Tribol Trans ASME 128(2):335–340

    Article  Google Scholar 

  • Jao HC, Chang KM, Chu LM, Li WL (2016a) A modified average Reynolds equation for rough bearings with anisotropic slip. J Tribol Trans ASME 138(1):011702

    Article  Google Scholar 

  • Jao HC, Chang KM, Chu LM, Li WL (2016b) A lubrication theory for anisotropic slips and flow rheology. Tribol Trans 59(2):252–266

    Article  Google Scholar 

  • Kligerman Y, Etsion I, Shinkarenko A (2005) Improving tribological performance of piston rings by partial surface texturing. J Tribol Trans ASME 127(3):632–638

    Article  Google Scholar 

  • Li WL, Shen RW (2009) Linear stability analysis of the herringbone groove journal bearings in microsystems—consideration of gas rarefaction effects. J Tribol Trans ASME 131:041705

    Article  Google Scholar 

  • Li WL, Chu HM, Chen MD (2006) The partially wetted bearing—extended Reynolds equation. Tribol Int 39(11):1428–1435

    Article  Google Scholar 

  • Liu J, Mochimaru Y (2013) the effects of trapezoidal groove on a self-acting fluid-lubricated herringbone grooves journal bearing. ISRN Tribol 2013:240239

    Google Scholar 

  • Liu CS, Chuo TC, Lin PH, Tsai MC, Chang YH, Horng JB (2007) Effects of the fluid dynamic bearing design on rotational precision of a spindle motor. IEEE Trans Magn 43(2):790–792

    Article  Google Scholar 

  • Plain bearing (2016) Retrieved from Wikipedia. https://en.wikipedia.org/wiki/Plain_bearing. Accessed 20 Nov 2016

  • Spikes HA (2003a) The half-wetted bearing. Part 1: extended reynolds equation. Proc Inst Mech Eng Part J J Eng Tribol 217(1):1–14

    Article  MathSciNet  Google Scholar 

  • Spikes HA (2003b) The half-wetted bearing. Part 2: potential application in low load contacts. Proc Inst Mech Eng Part J J Eng Tribol 217(1):15–26

    Article  Google Scholar 

  • Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a Lab-on-a-Chip. Annu Rev Fluid Mech 36:381–411

    Article  MATH  Google Scholar 

  • Stroock AD, Dertinger SK, Whitesides GM, Ajdari A (2002) Patterning flows using grooved surfaces. Anal Chem 74(20):5306–5312

    Article  Google Scholar 

  • Sun J, Changlin G (2004) Hydrodynamic lubrication analysis of journal bearing considering misalignment caused by shaft deformation. Tribol Int 37(10):841–848

    Article  Google Scholar 

  • Vijayaraghavan D, Keith TG (1989) Effect of cavitation on the performance of a grooved misaligned journal bearing. Wear 134(2):377–397

    Article  Google Scholar 

  • Vijayaraghavan D, Keith TG (1990) Analysis of a finite grooved misaligned journal bearing considering cavitation and starvation effects. J Tribol Trans ASME 112(1):60–67

    Article  Google Scholar 

  • Vinogradova O (1999) Slippage of water over hydrophobic surfaces. Int J Miner Process 56(1–4):31–60

    Article  Google Scholar 

  • Wierzcholski K (2008) Enhancement of memory capacity in HDD micro-bearing with hyperbolic journals. J KONES Powertrain Transp 15(3):555–560

    Google Scholar 

  • Wu SR (1986) A penalty formulation and numerical approximation of the Reynolds-Hertz problem of elastohydrodynamic lubrication. Int J Eng Sci 24(6):1001–1013

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu Y, Granick S (2001) Rate-dependent slip of newtonian liquid at smooth surfaces. Phys Rev Lett 87:096105

    Article  Google Scholar 

  • Zhu Y, Granick S (2002) Limits of the hydrodynamic no-slip boundary condition. Phys Rev Lett 88:106102

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our appreciation to the Ministry of Science and Technology of Taiwan (MOST 103-2221-E-006-050-MY3) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tien-Lun Liu.

Appendix: The modified Reynolds equation with anisotropic slips

Appendix: The modified Reynolds equation with anisotropic slips

For the modified Reynolds equation of anisotropic slips and under the usual assumptions of lubrication theory (Hamrock et al. 2004), the Navier–Stokes equation can be reduced by the order of magnitude method, i.e.

$$\begin{aligned} \frac{\partial }{\partial z}\left( {\mu \frac{\partial u}{\partial z}} \right) = \frac{\partial p}{\partial x} \hfill \\ \frac{\partial }{\partial z}\left( {\mu \frac{\partial v}{\partial z}} \right) = \frac{\partial p}{\partial y}. \hfill \\ \end{aligned}$$
(20)

In micro-bearings application, the no-slip boundary condition should be corrected. The anisotropic slip boundary conditions (Jao et al. 2016a, b) are

$$\begin{aligned} u = u_{1x} + b_{1x} \frac{\partial u}{\partial z},\;\;v = v_{1y} + b_{1y} \frac{\partial v}{\partial z},\;{\text{at }}\;z\; = \;0 \hfill \\ u = u_{2x} - b_{2x} \frac{\partial u}{\partial z},\;\;v = v_{2y} - b_{2y} \frac{\partial v}{\partial z},\;{\text{at}}\;z = h, \hfill \\ \end{aligned}$$
(21)

where \(\left( {u_{1x}, \, v_{1x} } \right)\) and \(\left( {u_{2x}, \, v_{2x} } \right)\) are boundary velocities of surface 1 and 2, respectively. Thus, the velocity profiles between two surfaces can be obtained by solving Eq. (20) with boundary conditions (Eq. 21) as shown in Eqs. (22) and (23)

$$u = u_{1x} + \frac{{z + b_{1x} }}{{h + b_{1x} + b_{2x} }}V_{x} + \frac{1}{\mu }\frac{\partial p}{\partial x}\left[ {\frac{{z^{2} }}{2} - \frac{h}{2}\frac{{\left( {h + 2b_{2x} } \right)\left( {z + b_{1x} } \right)}}{{h + b_{1x} + b_{2x} }}} \right],$$
(22)
$$v = v_{1y} + \frac{{z + b_{1y} }}{{h + b_{1y} + b_{2y} }}V_{y} + \frac{1}{\mu }\frac{\partial p}{\partial y}\left[ {\frac{{z^{2} }}{2} - \frac{h}{2}\frac{{\left( {h + 2b_{2y} } \right)\left( {z + b_{1y} } \right)}}{{h + b_{1y} + b_{2y} }}} \right],$$
(23)

where \(V_{x} = u_{2x} - u_{1x}\), and \(V_{y} = v_{2y} - v_{1y}\). The modified Reynolds equation can be obtained from the conservation of mass flow rate as shown in Eq. (24).

$$\frac{\partial }{\partial x}\left( {\dot{m}_{x} } \right) + \frac{\partial }{\partial y}\left( {\dot{m}_{y} } \right) = - \frac{\partial }{\partial t}\left( {\rho h} \right),$$
(24)

where the mass flow rates are

$$\dot{m}_{x} = \int_{0}^{h} { \, \rho u \, dz} ,\;\dot{m}_{y} = \int_{0}^{h} { \, \rho v \, dz} .$$
(25)

Thus, the stationary version of the modified Reynolds equation (Chen et al. 2013), which considered the anisotropic slip effect, is

$$\begin{aligned} \frac{\partial }{\partial x}\left( {\frac{{\rho h^{3} }}{12\mu }\frac{\partial p}{\partial x}Q_{px} } \right) + \frac{\partial }{\partial y}\left( {\frac{{\rho h^{3} }}{12\mu }\frac{\partial p}{\partial y}Q_{py} } \right) \hfill \\ = \frac{\partial (\rho h)}{\partial t} + \frac{\partial }{\partial x}\left( {\rho h\frac{{u_{1x} + u_{2x} }}{2}Q_{cx} } \right) + \frac{\partial }{\partial y}\left( {\rho h\frac{{v_{1y} + v_{2y} }}{2}Q_{cy} } \right), \hfill \\ \end{aligned}$$
(26)

where

$$Q_{pi} = \frac{{h^{2} + 4hb_{1i} + 4hb_{2i} + 4b_{1i} b_{2i} }}{{h\left( {h + b_{1i} + b_{2i} } \right)}},\;\quad i = x, \, y,$$
(27)

and

$$Q_{ci} = \frac{{h + 2b_{2i} }}{{h + b_{1i} + b_{2i} }},\;\quad i = x, \, y,$$
(28)

are the Poiseuille flow rate corrector and the Couette flow rate corrector, respectively. The dimensionless form of Eq. (26) is

$$\frac{\partial }{\partial \theta }\left( {\frac{{H^{3} }}{12}\frac{\partial P}{\partial \theta }Q_{px} } \right) + \left( {\frac{d}{b}} \right)^{2} \frac{\partial }{\partial Y}\left( {\frac{{H^{3} }}{12}\frac{\partial P}{\partial Y}Q_{py} } \right) = \frac{\partial }{\partial \theta }\left( {\frac{H}{2}Q_{cx} } \right),$$
(29)

with \(\theta = \frac{x}{r}\), \(Y = \frac{y}{b/2}\), \(H = \frac{h}{c}\), \(B_{i} = \frac{{b_{i} }}{c}\), \(P = \frac{{pc^{2} }}{{\mu_{0} u_{b} r}}\), \(u_{1x} = u_{b}\), \(v_{1y} = 0\), \(u_{2x} = u_{2y} = 0\), and the Poiseuille and Couette flow rate correctors are shown below, respectively.

$$Q_{px} = \frac{3}{H}\frac{{\left( {H + 2B_{1x} } \right)\left( {H + 2B_{2x} } \right)}}{{H + B_{1x} + B_{2x} }} - 2,$$
(30)
$$Q_{py} = \frac{3}{H}\frac{{\left( {H + 2B_{1y} } \right)\left( {H + 2B_{2y} } \right)}}{{H + B_{1y} + B_{2y} }} - 2,$$
(31)
$$Q_{cx} = \frac{{H + 2B_{2x} }}{{H + B_{1x} + B_{2x} }}.$$
(32)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jao, HC., Li, WL. & Liu, TL. Analysis of misaligned journal bearing with herringbone grooves: consideration of anisotropic slips. Microsyst Technol 23, 4687–4698 (2017). https://doi.org/10.1007/s00542-017-3283-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3283-2

Keywords

Navigation