Skip to main content
Log in

Design of a capacitive MEMS double beam switch using dynamic pull-in actuation at very low voltage

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper presents a design of a capacitive double beam MEMS microswitch based on dynamic pull-in actuation. The design consists of two suspended microbeams actuated by an electrostatic nonlinear force accounting for fringing field effect. The applied force controls the ON and the OFF states of the microswitch using a variable voltage. We first develop a mathematical model for the MEMS microswitch, then we investigate the static behavior and use finite element analysis to validate the derived mathematical model. A comparison with classical single beam design is also done. The results show 32% reduction in the actuation voltage when double beam design is used. Dynamic analysis using combination of DC and AC signals is examined, the outcome presents significant reduction in the actuation voltage. We demonstrate that driving the microswitch using square wave signals gives several improvements to the performance such as large pull-in band, low actuation voltage and small switching time. Global stability analysis showed that, for the same applied voltage, square wave signals are more efficient to actuate the microswitch. The electrostatic switching energy is also studied, we show that this energy can be optimized for specific switching times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abdel-Rahman EM, Nayfeh AH (2003) Secondary resonances of electrically actuated resonant microsensors. J Micromech Microeng 13(3):491

    Article  Google Scholar 

  • Afrang S, Abbaspour-Sani E (2006) A low voltage mems structure for rf capacitive switches. Progr Electromagn Res 65:157–167

    Article  Google Scholar 

  • Angira M, Rangra K (2015) Performance improvement of rf-mems capacitive switch via asymmetric structure design. Microsyst Technol 21(7):1447–1452

    Article  Google Scholar 

  • Chaffey JP, Austin M (2002) Analytical modeling of the electromechanical coupling of cantilever beams. In: SPIE’s international symposium on smart materials, nano-, and micro-smart systems, International Society for Optics and Photonics, pp 86–93

  • Cho IJ, Song T, Baek SH, Yoon E (2005) A low-voltage and low-power rf mems series and shunt switches actuated by combination of electromagnetic and electrostatic forces. IEEE Trans Microw Theory Tech 53(7):2450–2457

    Article  Google Scholar 

  • De SK, Aluru N (2004) Full-lagrangian schemes for dynamic analysis of electrostatic mems. J Microelectromech Syst 13(5):737–758

    Article  Google Scholar 

  • Girbau D, Lazaro A, Pradell L (2003) Rf mems switches based on the buckle-beam thermal actuator. In: 33rd European microwave conference, 2003. IEEE, vol 2, pp 651–654

  • Gross S, Zhang Q, Trolier-McKinstry S, Tadigadapa S, Jackson T (2003) Rf mems piezoelectric switch. In: Device research conference, 2003, IEEE, pp 99–100

  • Gupta RK, Hung ES, Yang YJ, Ananthasuresh G, Senturia SD (1996) Pull-in dynamics of electrostatically-actuated beams. In: Proceedings of the solid-state sensor and actuator workshop

  • He Xj WuQ, Wang Y, Mx Song, Yin Jh (2009) Numerical simulation and analysis of electrically actuated microbeam-based mems capacitive switch. Microsyst Technol 15(2):301–307

    Article  Google Scholar 

  • Khater M, Vummidi K, Abdel-Rahman E, Nayfeh A, Raman S (2011) Dynamic actuation methods for capacitive mems shunt switches. J Micromech Microeng 21(3):035,009

  • McEwan A, Collins S (2006) Direct digital-frequency synthesis by analog interpolation. IEEE Trans Circuits Syst II Express Briefs 53(11):1294–1298

    Article  Google Scholar 

  • Molaei S, Ganji BA (2016) Design and simulation of a novel RF MEMS shunt capacitive switch with low actuation voltage and high isolation. Microsyst Technol. doi:10.1007/s00542-016-2923-2

    Google Scholar 

  • Najar F, Choura S, El-Borgi S, Abdel-Rahman E, Nayfeh A (2005) Modeling and design of variable-geometry electrostatic microactuators. J Micromech Microeng 15(3):419

    Article  MATH  Google Scholar 

  • Najar F, Choura S, Abdel-Rahman EM, El-Borgi S, Nayfeh A (2006) Dynamic analysis of variable-geometry electrostatic microactuators. J Micromech Microeng 16(11):2449

    Article  MATH  Google Scholar 

  • Najar F, Nayfeh A, Abdel-Rahman E, Choura S, El-Borgi S (2010a) Nonlinear analysis of mems electrostatic microactuators: primary and secondary resonances of the first mode. J Vib Control 16(9):1321–1349

    Article  MATH  MathSciNet  Google Scholar 

  • Najar F, Nayfeh AH, Abdel-Rahman EM, Choura S, El-Borgi S (2010b) Dynamics and global stability of beam-based electrostatic microactuators. J Vib Control 16(5):721–748

    Article  MATH  Google Scholar 

  • Naoui M, Samaali H, Najar F (2015) Modeling and design of very low-voltage mems microswitch using dynamic pull-in. In: 2015 12th international multi-conference on systems, signals and devices (SSD), IEEE, pp 1–3

  • Nayfeh AH, Younis MI, Abdel-Rahman EM (2007) Dynamic pull-in phenomenon in mems resonators. Nonlinear Dyn 48(1–2):153–163

    Article  MATH  Google Scholar 

  • Nielson GN, Barbastathis G (2006) Dynamic pull-in of parallel-plate and torsional electrostatic mems actuators. J Microelectromech Syst 15(4):811–821

    Article  Google Scholar 

  • Pengwon K, Leelarasmee E (2007) A modified cmos differential-pair-based triangular-and-trapezoidal-to-sine converter. In: Proceedings of the 2007 ECTI international conference, ECTI association, pp 5–8

  • Peroulis D, Pacheco SP, Katehi LP (2004) Rf mems switches with enhanced power-handling capabilities. IEEE Trans Microw Theory Tech 52(1):59–68

    Article  Google Scholar 

  • Rebeiz G (2003) RF MEMS: theory, design and technology. Wiley-Interscience, New Jersey, USA

    Book  Google Scholar 

  • Samaali H, Najar F, Choura S, Nayfeh AH, Masmoudi M (2009) Novel design of mems ohmic rf switch with low voltage actuation. In: 2009 3rd international conference on signals, circuits and systems (SCS), IEEE, pp 1–5

  • Samaali H, Najar F, Choura S (2014) Dynamic study of a capacitive mems switch with double clamped-clamped microbeams. Shock Vib. doi:10.1155/2014/807489

    Google Scholar 

  • Samaali H, Najar F, Ouni B, Choura S (2015) Mems spdt microswitch with low actuation voltage for rf applications. Microelectr Int 32(2):55–62

    Article  Google Scholar 

  • Senturia SD (2007) Microsystem design. Springer Science and Business Media

  • Wright JA, Tai YC (1998) Micro-miniature electromagnetic switches fabricated using mems technology. Proc Relay Conf Natl Assoc Relay Manuf 46:13

    Google Scholar 

  • Zavracky PM, Majumder S, McGruer NE (1997) Micromechanical switches fabricated using nickel surface micromachining. J Microelectromech Syst 6(1):3–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fehmi Najar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samaali, H., Najar, F. Design of a capacitive MEMS double beam switch using dynamic pull-in actuation at very low voltage. Microsyst Technol 23, 5317–5327 (2017). https://doi.org/10.1007/s00542-016-3264-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-3264-x

Keywords

Navigation