Skip to main content
Log in

Dynamic analysis of a recirculation system of micro functional fluids for ink-jet applications

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

An Erratum to this article was published on 10 February 2017

Abstract

The rise of ink-jet printing technology has led to numerous studies about functional fluids, which, in most cases, are made to change and improve the chemical and rheological properties. Besides this, there are several patents about the recirculation fluid system that help to prevent settling particles, and thus improving print quality without consequences in the chemical composition of the fluid. This paper presents a dynamic analysis of a recirculation circuit for ink-jet microsystems applications with fluids that contain a particle size of 40 nm to 10 \(\upmu\)m. This analysis integrates multiple mathematical and experimental models, in regard to variables such as: viscosity change with temperature and solid volume fraction, sedimentation, surface tension and flow behavior. As a result, specific values of vacuum pressure for different drop-on-demand print heads with different ink-jet functional fluids, places of probable sedimentation and minimum pickup velocities to remove settled particles are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(\delta\) :

Laminar sublayer thickness

\(\eta\) :

Dynamic viscosity of the fluid

\(\gamma\) :

Surface tension

\(\kappa _i\) :

Coefficient of polynomial function \(\eta (T)_{\mathrm{IFF}-2}\)

\(\lambda _i\) :

Coefficient of polynomial function \(\psi (\beta )\) where \(0 \le \beta \le 1.2\)

\(\nu\) :

Kinematic viscosity

\(\phi\) :

Solid volume fraction of the mixture

\(\psi\) :

Correction factor Harkins and Brown

\(\rho _{f}\) :

Fluid density

\(\rho _{m}\) :

Mixture density

\(\rho _{p}\) :

Particle density

\(\kappa _i\) :

Coefficient of polynomial function \(\eta (\phi )_{\mathrm{IFF}-2}\)

\(\varpi _i\) :

Coefficient of polynomial function \(\eta (\phi )_{\mathrm{IFF}-1}\)

\(\vartheta _i\) :

Coefficient of polynomial function \(\psi (\beta )\) where \(1.2 \le \beta \le 1.6\)

\(\xi _i\) :

Coefficient of polynomial function \(\eta (T)_{\mathrm{IFF}-1}\)

\(C_{D}\) :

Drag coefficient

D :

Pipe diameter

\(d_{p}\) :

Particle diameter

f :

Friction factor due pipe flow

\(F_{st}\) :

Force due surface tension

FA:

Adhesion force on a particle

FB:

Buoyant force on a particle

FD:

Drag force on a particle

FF:

Friction force on a particle

FL:

Lifting force on a particle

FW:

Gravity force on a particle

f s :

Dry friction factor

g :

Gravitational constant

\(h_{p}\) :

Energy loss in pipes

k :

Loss coefficient factor for accessories

P :

Fluid pressure

r :

Particle radius

\(r_{n}\) :

Nozzles radius

Re :

Reynolds number

T :

Temperature

U :

Pickup velocity

\(U_{R}\) :

Uncertainty of a parameter R

V :

Average fluid velocity

\(V_{D}\) :

Drop volume

\(V_{s}\) :

Settling velocity of a particle

Z :

Height difference between points

B(1–2):

Pump 1 to Pump 2

BDG:

Butyl diglycol

BST:

Barium strontium titante

DG:

Diethylene glycol

DOD:

Drop-on-demand

E(1–4):

Elbow 1 to Elbow 4

F(1–5):

Fitting 1 to Fitting 5

FF:

Functional Fluid

IFF:

Ink-Jet Functional Fluid

P(1–10):

Pipe 1 to Pipe 10

PZT:

Piezoelectric Actuator

T(1–3):

Tank 1 to Tank 3

V(1–2):

Valve 1 to Valve 2

References

  • Batchelor G (1977) The effect of brownian-motion in bulk stress in a suspensions of spherical particles. J Fluid Mech 87(1):97–117. doi:10.1017/S0022112077001062

    Article  MathSciNet  Google Scholar 

  • Binder K, Allen AJ W, Atala A (2011) Drop-on-demand inkjet bioprinting: a primer. Gene Ther Regul 6(01):33–49. doi:10.1142/S1568558611000258

    Article  Google Scholar 

  • Cabrejos F, Klinzing G (1992) Incipient motion of solid particles in horizontal pneumatic conveying. Powder Technol 72(1):51–61. doi:10.1016/S0032-5910(92)85021-M

    Article  Google Scholar 

  • Cappi B, Ebert J, Telles R (2011) Rheological properties of aqueous si3n4 and mosi2 suspensions tailor-made for direct inkjet printing. J Am Ceram Soc 94(1):218–293. doi:10.1111/j.1551-2916.2010.04052.x

    Article  Google Scholar 

  • Chang J, Liu Y, Huang B (2016) Steady state response analysis of a tubular piezoelectric print head. Sensors 16(1):81. doi:10.3390/s16010081

    Article  Google Scholar 

  • Ćirković J, Vojisavljevi-ć K, Nikoli-ć N, Vuli-ć P, Brankovi-ć Z, Sre-ćkovi-ć T, Brankovi-ć G (2015) Dielectric and ferroelectric properties of BST ceramics obtained by a hydrothermally assisted complex polymerization method. Ceram Int 41(9, Part A):11,306–11,313. doi:10.1016/j.ceramint.2015.05.088

  • Dadvand A, Shervani-Tabar M, Khoo B (2011) A note on spark bubble drop-on-demand droplet generation: simulation and experiment. Int J Adv Manuf Tech 56(1–4):245–259. doi:10.1007/s00170-011-3165-1

    Article  Google Scholar 

  • Dörr A, Sadiki A, Mehdizadeh A (2013) A discrete model for the apparent viscosity of polydisperse suspensions including maximum packing fraction. J Rheol 57(3):743–765. doi:10.1122/1.4795746 (1978-present)

  • Einstein A (1906) A new determination of the molecular dimensions. Ann Phys 19(4):289–306

    Article  Google Scholar 

  • Friederich A, Binder J, Bauer W (2013) Rheological control of the coffee stain effect for inkjet printing of ceramics. J Am Ceram Soc 96(7):2093–2099. doi:10.1111/jace.12385

    Article  Google Scholar 

  • Friederich A, Kohler C, Nikfalazar M, Wiens A, Jakoby R, Bauer W, Binder J (2015) Inkjet-printed metal-insulator-metal capacitors for tunable microwave applications. Int J Appl Ceram Technol 12(S1). doi:10.1111/ijac.12362

  • Güngör G, Kara A, Gardini D, Blosi M, Dondi M, Zanelli C (2016) Ink-jet printability of aqueous ceramic inks for digital decoration of ceramic tiles. Dyes Pigm 127:148–154. doi:10.1016/j.dyepig.2015.12.018

    Article  Google Scholar 

  • Gorrick S, Rodríguez J (2014) Scaling of sediment dynamics in a laboratory model of a sand-bed stream. J Hydro Environ Res 8(2):77–87. doi:10.1016/j.jher.2013.12.001

    Article  Google Scholar 

  • Harkins W, Brown F (1919) The determination of surface tension (free surface energy), and the weight of falling drops: The surface tension of water and benzene by the capillary height method. J Am Chem Soc 41(4):499–524. doi:10.1021/ja01461a003

    Article  Google Scholar 

  • Hayden KS, Park K, Curtis JS (2003) Effect of particle characteristics on particle pickup velocity. Powder Technol 131(1):7–14. doi:10.1016/S0032-5910(02)00135-3

    Article  Google Scholar 

  • Hutchings I, Martin G (2013) Inkjet technology for digital fabrication. Wiley, Chichester

    Google Scholar 

  • Kim J, Grisso B, Kim J, Ha D, Inman D (2008) Electrical modeling of piezoelectric ceramics for analysis and evaluation of sensory systems. En Sensors Applications Symposium, 2008 SAS 2008 IEEE pp 122–127

  • Kim Y, Ren X, Ki J, Noh H (2014) Direct inkjet printing of micro-scale silver electrodes on polydimethylsiloxane (pdms) microchip. J Micromech Microeng 24(11):115,010, 10.1088/0960-1317/24/11/115010

  • Krieger I, Dougherty T (1959) A mechanism for non-newtonian flow in suspensions of rigid spheres. Trans Soc Rheol 137(3):137–152. doi:10.1122/1.548848

    Article  MATH  Google Scholar 

  • Kumashiro Y, Nakako H, Inada M, Yamamoto K, Izumi A, Ishihara M (2009) Novel materials for electronic device fabrication using ink-jet printing technology. Appl Surf Sci 256(4):1019–1022. doi:10.1016/j.apsusc.2009.05.134

    Article  Google Scholar 

  • Lee B, Ravindra P, Chang E (2008) A critical review: surface and interfacial tension measurement by the drop weight method. Chem Eng Comm 195(8):889–924. doi:10.1080/00986440801905056

    Article  Google Scholar 

  • Lee H, Chou K, Huang K (2005) Inkjet printing of nanosized silver colloids. Nanotechnology 16(10):2436–2441. doi:10.1088/0957-4484/16/10/074

    Article  Google Scholar 

  • Lee S, Nguyen X, Ko H (2012) Study on droplet formation with surface tension for electrohydrodynamic inkjet nozzle. J Mech Sci Technol 26(5):1403–1408. doi:10.1007/s12206-012-0301-y

    Article  Google Scholar 

  • Liu Y, Tsai M, Pai Y, Hwang W (2013) Control of droplet formation by operating waveform for inks with various viscosities in piezoelectric inkjet printing. Applied Physics A 111(2):509–516. doi:10.1007/s00339-013-7569-7

    Article  Google Scholar 

  • Maria CD, Ferrari L, Montemurro F, Vozzi F, Guerrazzi I, Bolan T, Vozzi G (2015) Design and validation of an open-hardware print-head for bioprinting application. Procedia Engineering 110:98–105. doi:10.1016/j.proeng.2015.07.015

    Article  Google Scholar 

  • Mendoza C, Santamaria-Holek I (2009) The rheology of hard sphere suspensions at arbitrary volume fractions: An improved differential viscosity model. J Chem Phys 130(4):044,904. doi:10.1063/1.3063120

  • Özkol E (2013) Rheological characterization of aqueous 3ytzp inks optimized for direct thermal ink jet printing of ceramic components. J Am Ceram Soc 96(4):1124–1130. doi:10.1111/j.1551-2916.2010.04052.x

    Article  Google Scholar 

  • Özkan M, Dimic-Misic K, Karakoc A, Hashmi S, Lund P, Maloney T, Paltakari J (2016) Rheological characterization of liquid electrolytes for drop-on-demand inkjet printing. Org Electron 38:307–315. doi:10.1016/j.orgel.2016.09.001

    Article  Google Scholar 

  • Pan Z, Wang Y, Huang H, Ling Z, Dai Y, Ke S (2015) Recent development on preparation of ceramic inks in ink-jet printing. Ceram Int 41(10, Part A):12,515–12,528. doi:10.1016/j.ceramint.2015.06.124

  • Parsa S, Gupta M, Loizeau F, Cheung K (2010) Effects of surfactant and gentle agitation on inkjet dispensing of living cells. Biofabrication 2(2):025. doi:10.1016/j.jeurceramsoc.2014.04.030

    Article  Google Scholar 

  • Poletto M, Joseph D (1995) Effective density and viscosity of a suspension. J Rheol 39(2):323–343. doi:10.1122/1.550692

    Article  Google Scholar 

  • Pu B, Chen D (2001) A study of the measurement of surface and interfacial tension by the maximum liquid drop volume method. J Colloid Interface Sci 235(2):265–272. doi:10.1006/jcis.2000.7385

    Article  Google Scholar 

  • Rabinovich E, Kalman H (2011) Threshold velocities of particle-fluid flows in horizontal pipes and ducts: literature review. Rev Chem Eng 27(5–7):215–239. doi:10.1515/REVCE.2011.011

    Google Scholar 

  • Robert T (2015) Green ink in all colors-printing ink from renewable resources. Prog Org Coat 78:287–292. doi:10.1016/j.porgcoat.2014.08.007

    Article  Google Scholar 

  • Sadeghian H, Hojjat Y, Ghosi M, Sheykholeslami M (2014) An approach to design and fabrication of a piezo-actuated microdroplet generator. Int J Manuf Technol 70(5–8):1091–1099. doi:10.1007/s00170-013-5371-5

    Article  Google Scholar 

  • Schultz R, Cole R (1979) Uncertainty analysis in boiling nucleation. AIChE symposium series 75:32–38

    Google Scholar 

  • Shields A (1936) Application of similarity principles and turbulence research to bed-load movement. California Institute of Technology (report 167)

  • Soleimani-Gorgani A, Bakhshandeh E, Najafi F (2014) Effect of dispersant agents on morphology and optical-electrical properties of nano indium tin oxide ink-jet ink. J Eur Ceram Soc 34(12):2959–2966. doi:10.1016/j.jeurceramsoc.2014.04.030

    Article  Google Scholar 

  • Tajamid E, Guenther B (2010) Rheological and sedimentation behaviour of nanosilver colloids for inkjet printing. Int J Nanomanuf 5(3–4):383–392. doi:10.1504/IJNM.2010.033881

    Google Scholar 

  • Tse C, Whiteley R, Yu T, Stringer J, MacNeil S, Haycock J, Smith, Patrick J (2016) Inkjet printing Schwann cells and neuronal analogue ng108-15 cells. Biofabrication 8(1):015,017. doi:10.1088/1758-5090/8/1/015017

  • Varela F, Armendáriz E, Wolluschek C (2011) Inkjet printed electronics: The wet on wet approach. Chem Eng Process 50(5–6):589–591. doi:10.1016/j.cep.2011.02.001

    Article  Google Scholar 

  • Wallace D, Trost H, Eichenlaub U (1998) Multi-fluid ink-jet array for manufacturing of chip-based microarray systems. In: Proc 2nd Int Conf Microreaction Technology

  • Wijshoff H (2008) Structure-and fluid-dynamics in piezo inkjet printheads. University of Twente, Enschede

  • Woo K, Jang D, Kim Y, Moon J (2013) Relationship between printability and rheological behavior of ink-jet conductive inks. Ceram Int 39(6):7015–7021. doi:10.1016/j.ceramint.2013.02.039

    Article  Google Scholar 

  • Wu Y, Lai W (2009) The simulation of the piezoelectric print head. Mod Phys Lett B 23(3):441–444. doi:10.1142/S0217984909018606

    Article  Google Scholar 

  • Wu Y, Xu H, Xu D, Bai Y (2014) Incipient velocity of non-uniform sediment in sloping river bends. Trans Tianjin Univ 20:163–167. doi:10.1007/s12209-014-2192-z

    Article  Google Scholar 

  • Zhang Y, Yang S, Chen L, Evans J (2008) Shape changes during the drying of droplets of suspensions. Langmuir 24(8):3752–3758. doi:10.1021/la703484w

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Cañas.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00542-017-3311-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arango, I., Cañas, M. Dynamic analysis of a recirculation system of micro functional fluids for ink-jet applications. Microsyst Technol 23, 1485–1494 (2017). https://doi.org/10.1007/s00542-016-3254-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-3254-z

Keywords

Navigation