Skip to main content
Log in

Experimental and computational study of gas bubble removal in a microfluidic system using nanofibrous membranes

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper presents a simple and efficient method for removing gas bubbles from a microfluidic system. This bubble removal system uses a T-junction configuration to generate gas bubbles within a water-filled microchannel. The generated bubbles are then transported to a bubble removal region and vented through a hydrophobic nanofibrous membrane. Four different hydrophobic Polytetrafluorethylene membranes with different pore sizes ranging from 0.45 to 3 μm are tested to study the effect of membrane structure on the system performance. The fluidic channel width is 500 μm and channel height ranges from 100 to 300 μm. Additionally, a 3D computational fluid dynamics model is developed to simulate the bubble generation and its removal from a microfluidic system. Computational results are found to be in a good agreement with the experimental data. The effects of various geometrical and flow parameters on bubble removal capability of the system are studied. Furthermore, gas–liquid two-phase flow behaviors for both the complete and partial bubble removal cases are thoroughly investigated. The results indicate that the gas bubble removal rate increases with increasing the pore size and channel height but decreases with increasing the liquid flow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100:335–354

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng D, Jiang H (2009) A debubbler for microfluidics utilizing air-liquid interfaces. Appl Phys Lett 95:214103

    Article  Google Scholar 

  • Damgaard LR, Larsen LH, Revsbech NP (1995) Microscale biosensors for environmental monitoring. J Trends Anal Chem 14(7):300–303

    Article  Google Scholar 

  • Davies CN (1952) The separation of the airborne dust and particles. In: Proceedings of Institute of Mechanical Engineers B1, London, pp 185–213

  • Derami HG, Darabi J (2015) Computational and experimental study of gas bubbles removal in a microfluidic system. In: ASME 2015 12th International Conference on Nanochannels, Microchannels, and Minichannels, July 6–9, 2015, San Francisco, California, USA

  • Drummond JE, Tahir MI (1984) Laminar viscous flow through regular arrays of parallel solid cylinders. Int J Multiph Flow 10(3):515–540

    Article  MATH  Google Scholar 

  • Fei K, Chen TS, Hong CW (2010) Direct methanol fuel cell bubble transport simulations via thermal lattice Boltzmann and volume of fluid methods. J Power Sources 195(7):1940–1945

    Article  Google Scholar 

  • Fu TT, Ma Y, Funfschilling D, Li HZ (2009) Bubble formation and breakup mechanism in a microfluidic flow-focusing device. Chem Eng Sci 64:2392–2400

    Article  Google Scholar 

  • Fu TT, Hui X, Zhu C-Y, Ma Y-G, Li H-Z (2011) Formation of dispersed small bubbles in flow-focusing microchannels. J Chem Eng Chin Univ 25:337–340

    Google Scholar 

  • Fukagata K, Kasagi N, Ua-arayaporn P, Himeno T (2007) Numerical simulation of gas–liquid two-phase flow and convective heat transfer in a micro tube. Int J Heat Fluid Flow 28(1):72–82

    Article  Google Scholar 

  • Garstecki P, Gitlin I, DiLuzio W, Whitesides GM, Kumacheva E, Stone HA (2004) Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl Phys Lett 85:2649–2652

    Article  Google Scholar 

  • Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction-Scaling and mechanism of break-up. Lab Chip 6:437–446

    Article  Google Scholar 

  • Gobby D, Angeli P, Gavriilidis A (2001) Mixing characteristics of T-type microfluidic mixers. J Micromech Microeng 11:126

    Article  Google Scholar 

  • Grinstaff MW, Suslick KS (1991) Air-filled proteinaceous microbubbles: synthesis of an echo-contrast agent. Proc Natl Acad Sci 88:7708–7710

    Article  Google Scholar 

  • Heiszwolf JJ, Kreutzer MT, van den Eijnden MG, Kapteijn F, Moulijn JA (2001) Gas–liquid mass transfer of aqueous Taylor flow in monoliths. Catal Today 69(1–4):51–55

    Article  Google Scholar 

  • Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225

    Article  MATH  Google Scholar 

  • Jaganathana S, Vahedi Tafreshib H, Pourdeyhimia B (2008) A realistic approach for modeling permeability of fibrous media: 3-D imaging coupled with CFD simulation. Chem Eng Sci 63(1):244–252

    Article  Google Scholar 

  • Johnson M, Liddiard G, Eddings M, Gale B (2009) Bubble inclusion and removal using PDMS membrane-based gas permeation for applications in pumping, valving and mixing in microfluidic devices. J Micromech Microeng 19:095011

    Article  Google Scholar 

  • Kang S, Zhou B (2014) Numerical study of bubble generation and transport in a serpentine channel with a T-junction. Int J Hydrogen Energy 39(5):2325–2333

    Article  Google Scholar 

  • Karlsson JM, Haraldsson T, Laakso S, Virtanen A, Maki M, Ronan G, van der Wijngaart W (2011) PCR on a PDMS-based microchip with integrated bubble removal. IEEE 2011:2215–2218

    Google Scholar 

  • Kreutzer MT, Kapteijn F, Moulijn JA, Kleijn CR, Heiszwolf JJ (2005) Inertial and interfacial effects on pressure drop of Taylor flow in capillaries. AIChE J 51(9):2428–2440

    Article  Google Scholar 

  • Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92:545031–545034

    Google Scholar 

  • Lochovsky C, Yasotharan S, Günther A (2012) Bubbles no more: in-plane trapping and removal of bubbles in microfluidic devices, Lab on a Chip, 12. Issue 3:595–601

    Google Scholar 

  • Mehling M, Tay S (2014) Microfluidic cell culture. J Curr Opin Biotechnol 25:95–102

    Article  Google Scholar 

  • Meng DD, Kim J, Kim C-J (2006) A degassing plate with hydrophobic bubble capture and distributed venting for microfluidic devices. J Micromech Microeng 16:419–424

    Article  Google Scholar 

  • Osher S, Sethian JA (1988) Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulation. J Comput Phys 79(1):12–49

    Article  MathSciNet  MATH  Google Scholar 

  • Qian D, Lawal A (2006) Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel. Chem Eng Sci 61(23):7609–7625

    Article  Google Scholar 

  • Quan P, Zhou B, Sobiesiak A, Liu Z (2005) Water behavior in serpentine micro-channel for proton exchange membrane fuel cell cathode. J Power Sources 152:131–145

    Article  Google Scholar 

  • Shin YS, Cho K, Lim SH, Chung S, Park S-J, Chung C, Han D-C, Chang JK (2003) PDMS-based micro PCR chip with Parylene coating. J Micromech Microeng 13:768–774

    Article  Google Scholar 

  • Skelley A, Voldman MJ (2008) An active bubble trap and debubbler for microfluidic systems. Lab Chip 8:1733–1737

    Article  Google Scholar 

  • Sung JH, Shuler ML (2009) Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap. Biomed Microdev 11(4):731–738

    Article  Google Scholar 

  • Taha T, Cui ZF (2004) Hydrodynamics of slug flow inside capillaries. Chem Eng Sci 59(6):1181–1190

    Article  Google Scholar 

  • Taha T, Cui ZF (2006) CFD modelling of slug flow inside square capillaries. Chem Eng Sci 61(2):665–675

    Article  Google Scholar 

  • Tan J, Li SW, Wang K, Luo GS (2006) Gas–liquid flow in T-junction microfluidic devices with a new perpendicular rupturing flow route. Chem Eng J 146:428–433

    Article  Google Scholar 

  • Tomadakis MM, Robertson JT (2005) Viscous permeability of random fiber structures: comparison of electrical and diffusional estimates with experimental and analytical results. J Compos Mater 39(2):163–188

    Article  Google Scholar 

  • Tsai JH, Lin L (2002) Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump. J Sens Actuators 97–98:665–671

    Article  Google Scholar 

  • Vundavilli R, Darabi J (2014) Bubble removal in microfluidic devices using nanofibrous membranes, FEDSM2014-21616. In: Proceedings of the ASME 2014 4th Joint US-European fluids engineering division summer meeting and 12th international conference on Nanochannels, Microchannels, and Minichannels FEDSM2014 August 3–7, 2014, Chicago, Illinois, USA

  • Xiong R, Bai M, Chung JN (2007) Formation of bubbles in a simple co-flowing micro-channel. J Micromech Microeng 17:1002–1011

    Article  Google Scholar 

  • Xu JH, Li SW, Chen GG, Luo GS (2006) Formation of monodisperse microbubbles in a microfluidic device. AIChE J 52:2254–2259

    Article  Google Scholar 

  • Xu J, Vaillant R, Attinger D (2010) Use of a porous membrane for gas bubble removal in microfluidic channels: physical mechanisms and design criteria. Microfluid Nanofluid 9(4–5):765–772

    Article  Google Scholar 

  • Yuan Z, Zhang Y, Li Z, Zhao Y, Liu X (2014) Investigation of mass transport and cell performance on µDMFC with different anode flow fields. Int J Energy 38:139–150

    Article  Google Scholar 

  • Zhu X (2009) Micro/nanoporous membrane based gas–water separation in microchannel. Microsyst Technol 15(9):1459–1465

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a RGGS Grant from the SIUE Graduate School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Darabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derami, H.G., Vundavilli, R. & Darabi, J. Experimental and computational study of gas bubble removal in a microfluidic system using nanofibrous membranes. Microsyst Technol 23, 2685–2698 (2017). https://doi.org/10.1007/s00542-016-3020-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-3020-2

Keywords

Navigation