Skip to main content
Log in

Fringing capacitance and tolerance of DRIE effect on the performance of bulk silicon comb-drive actuator

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A bulk silicon comb-drive actuator with low driving voltage and large displacement is presented in this paper. The bulk silicon comb-drive actuator is fabricated by a simple bulk micromachining process based on the low temperature Au–Au bonding technology. A cascade folded beam is designed to improve the displacement of comb-drive actuator at low driving voltages. The instability of the whole system decreases by utilizing unequal wide comb fingers design. The fringing capacitance and the fabrication tolerances together with their effects on the performances of the comb-drive actuators are also discussed. The measurement results show that the capacitance change rate and the displacement change rate of the comb-drive actuator are 1.5 fF/V2 and 0.125 μm/V2, respectively. The displacement of the actuator can reach 28.5 μm at 15 V driving voltages. The experimental results of the comb-drive actuator are in good agreement with the modified theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Chen B, Miao J (2007) Influence of deep RIE tolerances on comb-drive actuator performance. J Phys D Appl Phys 40:970–976

    Article  Google Scholar 

  • Chen YC, Chang ICM, Chen R, Houc MTK (2008) On the side instability of comb-fingers in MEMS electrostatic devices. Sens Actuators A 148:201–210

    Article  Google Scholar 

  • Chiou JC, Kuo CF (2007) Development of vertical electrostatic comb-drive actuator using magnified cascade configuration. Jpn J Appl Phys 46:6546–6549

    Article  Google Scholar 

  • Erismis MA, Neves HP, Moor PD, Puers R, Hoof CV (2010) A water-tight packaging of MEMS electrostatic actuators for biomedical applications. J Microsyst Technol 16:2109–2113

    Article  Google Scholar 

  • Franke AE, Heck JM, King TJ, Howe RT (2003) Polycrystalline silicon-germanium films for integrated microsystems. J Microelectromech Syst 12:160–171

    Article  Google Scholar 

  • Gerson Y, Krylov S, Ilic B, Schreiber D (2008) Large displacement low voltage multistable micro actuator. In: Proceedings of the IEEE 21st international conference on micro electro mechanical systems, pp 463–466

  • Grade JD, Jerman H, Kenny TW (2003) Design of large deflection electrostatic actuators. J Microelectromech Syst 12:335–343

    Article  Google Scholar 

  • Gu L, Li X, Bao H, Liu B, Wang Y, Liu M, Yang Z, Cheng B (2006) Single–wafer-processed nano-positioning XY-stages with trench-sidewall micromachining technology. J Micromech Microeng 16:1349–1357

    Article  Google Scholar 

  • Guo Z, Meng Y, Wu H, Su C, Wenb S (2007) Measurement of static and dynamic friction coefficients of sidewalls of bulk-microfabricated MEMS devices with an on-chip micro-tribotester. Sens Actuators A 135:863–869

    Article  Google Scholar 

  • Jing E, Xiong B, Wang YL (2010) Low temperature Au–Si wafer bonding. J Micromech Microeng 20:095014–095016

    Article  Google Scholar 

  • Krylov S, Bernstein Y (2006) Large displacement parallel plate electrostatic actuator with saturation type characteristic. Sens Actuators A 130–131:497–512

    Article  Google Scholar 

  • Lee JY, Kim SH, Lim HT, Kim CH, Baek CW, Kim YK (2003) Electric spring modeling for a comb actuator deformed by the footing effect in deep reactive ion etching. J Microelectromech Syst 13:72–79

    Google Scholar 

  • Li J, Zhang QX, Liu AQ (2003) Advanced fiber optical switches using deep RIE (DRIE) fabrication. Sens Actuators A 103:286–295

    Article  Google Scholar 

  • Li J, Liu AQ, Zhang QX (2006) Tolerance analysis of comb-drive actuators using DRIE fabrication. Sens Actuators A 125:494–503

    Article  Google Scholar 

  • Liu X, Tong J, Sun Y (2007) A millimeter-sized nanomanipulator with sub-nanometer positioning resolution and large force output. Smart Mater Struct 16:1742–1750

    Article  Google Scholar 

  • Tang WC, Nguyen TCH, Howe RT (1989) Laterally driven polysilicon resonant microstructures. Sens Actuators A 20:25–32

    Article  Google Scholar 

  • Wang K, Sinclair M, Starkweather GK, Böhringer KF (2007) An electrostatic zigzag transmissive microoptical switch for MEMS displays. J Microelectromech Syst 16:140–154

    Article  Google Scholar 

  • Wolffenbuttel RF, Wise KD (1994) Low-temperature silicon wafer-to-wafer bonding using gold at eutectic temperature. Sens Actuators A 43:223–229

    Article  Google Scholar 

  • Xiao Z, Peng W, Wolffenbuttel RF, Farmer KR (2003) Micromachined variable capacitors with wide tuning range. Sens Actuators A 104:299–305

    Article  Google Scholar 

  • Ye W, Mukherjee S, Macdonald NC (1998) Optimal shape design of an electrostatic comb drive in micromechanical systems. J Microelectromech Syst 7:16–26

    Article  Google Scholar 

  • Zhou G, Dowd P (2003) Tilted folded-beam suspension for extending the stable travel range of comb-drive actuators. J Micromech Microeng 13:303–306

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities (2014B02014), the National Natural Science Foundation of China (11574072) and the National High Technology Research and Development Program of China (863 Program, 2013AA041106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhua Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, C., Qin, M. Fringing capacitance and tolerance of DRIE effect on the performance of bulk silicon comb-drive actuator. Microsyst Technol 23, 2727–2738 (2017). https://doi.org/10.1007/s00542-016-3014-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-3014-0

Keywords

Navigation