Skip to main content

Advertisement

Log in

Investigations of silicon wafer bonding utilizing sputtered Al and Sn films

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Nowadays, wafer bonding is becoming a key enabling technology for three-dimensional (3D) packaging, micro-electro-mechanical systems (MEMS) encapsulation and heterogeneous integration. This paper develops and investigates entire Si wafer bonding based on thin Al and Sn films. 500 nm-thick Al and 500 nm-thick Sn films are sputtered onto silicon wafers. At bonding temperature of 280 °C, the average shear strength of 11 MPa is achieved at bonding time of 1 min. The dependence of shear strength and fracture surface morphology on bonding temperature and bonding time is illustrated. The physical mechanism is proposed. It indicates that high bonding strength can be achieved at appropriate low bonding temperature with proper short bonding time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chanchani R, Nordquist CD, Olsson RH, Peterson T, Shul R, et al (2011) A new wafer-level packaging technology for MEMS with hermetic micro-environment. Proceedings of IEEE 61st Electronic Components and Technology Conference, Lake Buena Vista, FL, pp 1604–1609. doi:10.1109/ECTC.2011.5898725

  • Chang JY, Lin LW (2010) MEMS packaging technologies and applications. International Symposium on VLSI Design Automation and Test, Hsin Chu, pp 126–129. doi:10.1109/VDAT.2010.5496707

  • Fischer A, Forsberg F, Lapisa MA, Roxhed N, Stemme G, et al (2012) Heterogeneous integration for optical MEMS. Proceedings of 23rd Annual Meeting of the IEEE Photonics Society, Denver, CO, pp 487–488. doi:10.1109/PHOTONICS.2010.5698973

  • Lapisa M, Steme G, Niklaus F (2011) Wafer-level heterogeneous integration for MOEMS, MEMS, and NEMS. IEEE J Sel Top Quant Electron 17:629–644. doi:10.1109/JSTQE.2010.2093570

    Article  Google Scholar 

  • Lin HC, Chang KL, Hsieh KC, Cheng KY, Wang WH (2002) Metallic wafer bonding for the fabrication of long-wavelength vertical-cavity surface-emitting lasers. J Appl Phys 92:4132. doi:10.1063/1.1502200

    Article  Google Scholar 

  • Lin H, Stevenson JTM, Gundlach AM, Dunare CC, Walton AJ (2008) Direct Al–Al contact using low temperature wafer bonding for integrating MEMS and CMOS devices. Microelectron Eng 85:1059–1061. doi:10.1016/j.mee.2008.01.054

    Article  Google Scholar 

  • Malik N, Schjølberg-Henriksen K, Poppe E, Taklo MMV, Finstad TG (2014) Al-Al thermocompression bonding for wafer-level MEMS sealing. Sensors Actuators A 211:115–120. doi:10.1016/j.sna.2014.02.030

    Article  Google Scholar 

  • Malik N, Schjølberg-Henriksen K, Poppe E, Taklo MMV, Finstad TG (2015) Impact of SiO2 on Al–Al thermocompression wafer bonding. J Micromech Microeng 25:035025. doi:10.1088/0960-1317/25/3/035025

    Article  Google Scholar 

  • Murr LE (1981) Surfaces and interfaces in ceramic and ceramic-metal systems. In: Pask J et al (eds) The series materials science research. Plenum Press, New York, pp 107–110

    Google Scholar 

  • Rozhitsina EV, Gruner S, Kaban I, Hoyer W, Sidorov VE et al (2011) Dynamic viscosities of pure tin and Sn–Ag, Sn–Cu, and Sn–Ag–Cu eutectic melts. Russian Metall (Metally) 2011:118–121

    Article  Google Scholar 

  • Saha R, Fritz N, Bidstrup-Allen SA, Kohl PA (2013) Packaging-compatible wafer level capping of MEMS devices. Microelectron Eng 104:75–84. doi:10.1016/j.mee.2012.11.010

    Article  Google Scholar 

  • Seemann R, Herminghaus S, Jacobs K (2001) Gaining control of pattern formation of dewetting liquid films. J Phys Condens Matter 13:4925

    Article  Google Scholar 

  • Tana CS, Lim DF, Ang XF, Wei J, Leong KC (2012) Low temperature Cu–Cu thermo-compression bonding with temporary passivation of self-assembled monolayer and its bond strength enhancement. Microelectron Reliab 52:321–324. doi:10.1016/j.microrel.2011.04.003

    Article  Google Scholar 

  • Yun CH, Martin JR, Tarvin EB, Winbigler JT (2008) Al to Al wafer bonding for MEMS encapsulation and 3-D interconnect. Proceedings of IEEE 21st International Conference on Micro Electro Mechanical Systems, Tucson, AZ, pp 990–993. doi:10.1109/MEMSYS.2008.4443780

  • Zhu ZY, Yu M, Tian DY, Zhu YW, Wang PQ et al (2013) Aluminum-coated silicon wafer bonding with tin intermediate layer. J Micro/Nanolith MEMS MOEMS 12:010101. doi:10.1117/1.JMM.12.1.013012

    Article  Google Scholar 

Download references

Acknowledgments

The work presented is funded by Major State Basic Research Development Program of China (Project No. 2015CB057201), National Science and Technology Major Project of China (Project No. 2013ZX02501), and National Science and Technology Major Project of China (Project No. 2009ZX02038-02). Zhiyuan Zhu would like to thank the China Scholarship Council for Fellowship support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Yu, M. & Jin, Y. Investigations of silicon wafer bonding utilizing sputtered Al and Sn films. Microsyst Technol 23, 929–933 (2017). https://doi.org/10.1007/s00542-016-2982-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-2982-4

Keywords

Navigation