Skip to main content
Log in

A remotely powered fully integrated low power class-E power amplifier for implantable sensor systems

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper presents a fully integrated low power class-E power amplifier and its integration to remotely powered sensor system. The on-chip 1.2 GHz power amplifier is implemented in 0.18 µm CMOS process with 0.2 V supply. The implantable system is powered by using an inductively coupled remote powering link at 13.56 MHz. A passive full-wave rectifier converts the induced AC voltage on the implant coil into a DC voltage. A clean and stable 1.8 V supply voltage for the sensor and communication blocks is generated by a voltage regulator. On–off keying modulated low-power transmitter at 1.2 GHz is used for the transmission of the data collected from the sensors. The transmitter is composed of a LC tank oscillator and a fully on-chip class-E power amplifier. Compared to the conventional class-E power amplifiers, an additional network which reduces the on-chip area is used at the output of the power amplifier. The measurement results verify the functionality of the remotely powered implantable sensor system and the power amplifier. The integrated power amplifier provides −10 dBm output power for 50 Ω load with a drain efficiency of 31.5 %. The uplink data communication with a data rate of 600 kbps is established by using a commercial 50 Ω chip antenna at 1 m communication distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bae Joonsung, Yan L, Yoo H-J (2011) A low energy injection-locked FSK transceiver with frequency-to-amplitude conversion for body sensor applications. IEEE J Solid State Circ 46:928–937. doi:10.1109/JSSC.2011.2109450

    Article  Google Scholar 

  • Friis HT (1946) A note on a simple transmission formula. Proc IRE 34:254–256. doi:10.1109/JRPROC.1946.234568

    Article  Google Scholar 

  • Jovanov E, Milenkovic A, Otto C, de Groen PC (2005) A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. J NeuroEng Rehabil 2:1–10. doi:10.1186/1743-0003-2-6

    Article  Google Scholar 

  • Kee SD, Aoki I, Hajimiri A, Rutledge D (2003) The class-E/F family of ZVS switching amplifiers. IEEE Trans Microw Theory Tech 51:1677–1690. doi:10.1109/TMTT.2003.812564

    Article  Google Scholar 

  • Kilinc EG, Maloberti F, Dehollain C (2012) Remotely powered telemetry system with dynamic power-adaptation for freely moving animals. In: 2012 IEEE biomedical circuits and systems conference (BioCAS), pp 260–263

  • Kilinc EG, Ture K, Maloberti F, Dehollain C (2013) Design and comparison of class-C and class-D power amplifiers for remotely powered systems. In: 2013 IEEE 20th international conference on electronics, circuits, and systems (ICECS), pp 461–464

  • Kilinc EG, Ghanad MA, Maloberti F, Dehollain C (2015) A remotely powered implantable biomedical system with location detector. IEEE Trans Biomed Circ Syst 9:113–123. doi:10.1109/TBCAS.2014.2321524

    Article  Google Scholar 

  • Le TT, Han J, von Jouanne A et al (2006) Piezoelectric micro-power generation interface circuits. IEEE J Solid State Circ 41:1411–1420. doi:10.1109/JSSC.2006.874286

    Article  Google Scholar 

  • Liu Y-H, Lin T-H (2009) A wideband PLL-based G/FSK transmitter in 0.18 m CMOS. IEEE J Solid State Circ 44:2452–2462. doi:10.1109/JSSC.2009.2022994

    Article  Google Scholar 

  • Liu X, Izad MM, Yao L, Heng C-H (2014) A 13 pJ/bit 900 MHz QPSK/16-QAM band shaped transmitter based on injection locking and digital PA for biomedical applications. IEEE J Solid State Circ 49:2408–2421. doi:10.1109/JSSC.2014.2354650

    Article  Google Scholar 

  • Movassaghi S, Abolhasan M, Lipman J et al (2014) Wireless body area networks: a survey. IEEE Commun Surv Tutor 16:1658–1686. doi:10.1109/SURV.2013.121313.00064

    Article  Google Scholar 

  • Natarajan K, Allstot DJ, Walling JS (2011a) Transmitters for body sensor networks: a comparative study. In: 2011 IEEE biomedical circuits and systems conference (BioCAS), pp 185–188

  • Natarajan K, Yoo S, Allstot DJ, Walling JS (2011b) Towards greener wireless transmission: efficient power amplifier design. In: Green computing conference and workshops (IGCC), 2011 International, pp 1–4

  • Sodagar AM, Najafi K, Wise KD, Ghovanloo M (2006) Fully-integrated CMOS power regulator for telemetry-powered implantable biomedical microsystems. In: IEEE custom integrated circuits conference, 2006. CICC’06, pp 659–662

  • Sokal NO, Sokal AD (1975) Class E—a new class of high-efficiency tuned single-ended switching power amplifiers. IEEE J Solid State Circ 10:168–176. doi:10.1109/JSSC.1975.1050582

    Article  Google Scholar 

  • Tan J, Heng C-H, Lian Y (2012) Design of efficient class-e power amplifiers for short-distance communications. IEEE Trans Circ Syst Regul Pap 59:2210–2220. doi:10.1109/TCSI.2012.2188951

    Article  MathSciNet  Google Scholar 

  • Ture K, Kilinc EG, Dehollain C (2015) A low power on-chip class-E power amplifier for remotely powered implantable sensor systems. In: Proc. SPIE 9518, Bio-MEMS and medical microdevices II, pp 951805-1–951805-7

  • Vassiliou CC, Liu VH, Cima MJ (2015) Miniaturized, biopsy-implantable chemical sensor with wireless, magnetic resonance readout. Lab Chip 15:3465–3472. doi:10.1039/C5LC00546A

    Article  Google Scholar 

  • Zeng F-G, Rebscher S, Harrison W et al (2008) Cochlear Implants: system design, integration, and evaluation. Biomed Eng IEEE Rev In 1:115–142. doi:10.1109/RBME.2008.2008250

    Article  Google Scholar 

  • Zulinski RE, Steadman JW (1987) Class E power amplifiers and frequency multipliers with finite DC-feed inductance. IEEE Trans Circ Syst 34:1074–1087. doi:10.1109/TCS.1987.1086268

    Article  Google Scholar 

Download references

Acknowledgments

This research work has been financed by the Swiss National Funding (SNF) organism thanks to the SNF project dedicated to the Detection of Epilepsy in vivo and through the SNF Sinergia Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerim Ture.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ture, K., Kilinc, E.G. & Dehollain, C. A remotely powered fully integrated low power class-E power amplifier for implantable sensor systems. Microsyst Technol 22, 1519–1527 (2016). https://doi.org/10.1007/s00542-015-2747-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2747-5

Keywords

Navigation