Skip to main content
Log in

Design, modeling, and characterization of a MEMS electrothermal microgripper

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this paper, a MEMS electrothermal microgripper is introduced, analyzed and tested. The microgripper has been fabricated using the PolyMUMPs surface micromachining process. Analytical models were established based on the electro-thermal and thermo-mechanical analysis to describe the mechanical performances of the microgripper. Axial deformations including first-order nonlinear strain–displacement relations are also included to account for the presence of thermal loading. The materials parameters that significantly affect the performance of the microgripper are discussed, including the thermal conduction, convective and temperature-dependent resistivity. The experimental results show that input voltages below 14 V are required for the microgripper to achieve the jaws deflection in 9.1 μm. Both the experimental and analytical results are in good agreement with the results of modeling. To demonstrate the reliability of the microgripper, the repeatability and reproducibility of jaws gap were tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Andersen KN, Carlson K, Petersen DH, Mølhave K, Eichhorn V, Fatikow S, Bølggild P (2008) Electrothermal microgrippers for pick-and-place operations. Microelectron Eng 85(5):1128–1130

    Article  Google Scholar 

  • Chen T, Sun L, Chen L, Rong W, Li X (2010) A hybrid-type electrostatically driven microgripper with an integrated vacuum tool. Sens Actuators, A 158(2):320–327

    Article  Google Scholar 

  • Chronis N, Lee LP (2005) Electrothermally activated SU-8 microgripper for single cell manipulation in solution. J Microelectromech Syst 14(4):857–863

    Article  Google Scholar 

  • Dow AA, Jazizadeh B, Kherani NP, Rangelow I (2011) Development and modeling of an electrothermally MEMS microactuator with an integrated microgripper. J Micromech Microeng 21(12):125026–125028

    Article  Google Scholar 

  • Enikov ET, Lazarov KV (2005) Micro-mechanical switch array for meso-scale actuation. Sens Actuators, A 121(1):282–293

    Article  Google Scholar 

  • Hickey R, Kujath M, Hubbard T (2002) Heat transfer analysis and optimization of two-beam microelectromechanical thermal actuators. J Vac Sci Technol A 20(3):971–974

    Article  Google Scholar 

  • Huang QA, Lee NKS (1999) Analysis and design of polysilicon thermal flexure actuator. J Micromech Microeng 9(1):64–70

    Article  MathSciNet  Google Scholar 

  • Iamoni S, Somà A (2014) Design of an electro-thermally actuated cell microgripper. Microsyst Technol 20(4–5):869–877

    Article  Google Scholar 

  • Johnstone RW, Parameswaran M (2004) Modelling surface-micromachined electrothermal actuators. Can J Elect Comput Eng 29(3):193–202

    Article  Google Scholar 

  • Kapels H, Aigner R, Binder J (2000) Fracture strength and fatigue of polysilicon determined by a novel thermal actuator. IEEE Trans Electr Dev 47(7):1522–1528

    Article  Google Scholar 

  • Kim C, Pisano AP, Muller RS (1992) Silicon-processed overhanging microgripper. J Microelectromech Syst 1(1):31–36

    Article  Google Scholar 

  • Leang KK (2010) Emerging challenges of microactuators for nanoscale positioning, assembly, and manipulation. J Manuf Sci E-T ASME 132(3):030917

    Article  Google Scholar 

  • Mackay RE, Le HR, Clark S, Williams JA (2013) Polymer micro-grippers with an integrated force sensor for biological manipulation. J Micromech Microeng 23(1):15005–15007

    Article  Google Scholar 

  • Shen X, Chen X (2013) Mechanical performance of a cascaded V-shaped electrothermal actuator. Int J Adv Rob Syst 10:8–379

    MathSciNet  Google Scholar 

  • Simitses GJ (1976) An introduction to elastic stability of structure. Prentice Hall PTR, Englewood Cliffs

    Google Scholar 

  • Timoshenko S, Goodier J (1951) Theory of elasticity, 2nd edn. McGraw Hill PTR, New York

    MATH  Google Scholar 

  • Wang ZL, Shen XJ, Chen XY (2013) Out displacement calculation and experiment for inclined beam-type electrothermal microactuator. Opti Precision Eng 21(12):3080–3086

    Article  Google Scholar 

  • Zeman MJ, Bordatchev EV, Knopf GK (2006) Design, kinematic modeling and performance testing of an electro-thermally driven microgripper for micromanipulation applications. J Micromech Microeng 16(8):1540–1549

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge the financial supports from the National Natural Science Foundation of China under Grant No. 51075249.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejin Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Shen, X. & Chen, X. Design, modeling, and characterization of a MEMS electrothermal microgripper. Microsyst Technol 21, 2307–2314 (2015). https://doi.org/10.1007/s00542-014-2404-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-014-2404-4

Keywords

Navigation