Skip to main content
Log in

Atomistic simulation of electrical enhanced nanowelding of carbon nanotube to metal

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Electrical enhanced nanowelding of carbon nanotube (CNT) to metal is investigated using molecular dynamics simulation. It is found that attractions exerted by the charges can facilitate wetting of metal atoms with poor wetting ability onto the CNT surface at a much lower temperature, during which the CNT nailing into the semi molten metal bulk forms a new stable CNT–metal hybrid structure and therefore the electrical enhanced nanowelding is an irreversible process in case of removing the charges. Also, surface charges which induce great modification of CNT–metal interfacial configuration and lattice distortion can effectively facilitate the surface melting. As a result, more free metal atoms are involved in the welding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexander YL, Ali A (2003) Reconstruction of charged surfaces: general trends and a case study of Pt(110) and Au(110). Phys Rev B 68:245416

    Article  Google Scholar 

  • Andriotis A, Menon M, Gibson H (2008) Realistic nanotube-metal contact configuration for molecular electronics applications. IEEE Sens J 8:910

    Article  Google Scholar 

  • Arcidiacono S, Walther JH, Poulikakos D, Passerone D, Koumoutsakos P (2005) Solidification of gold nanoparticles in carbon nanotubes. Phys Rev Lett 94:105502

    Article  Google Scholar 

  • Chen JY, Kutana A, Collier CP, Giapis KP (2005) Electrowetting in carbon nanotubes. Science 310:1480

    Article  Google Scholar 

  • Chen CX et al (2007) A method for creating reliable and low-resistance contacts between carbon nanotubes and microelectrodes. Carbon 45:436

    Article  Google Scholar 

  • Chen MX, Song XH, Lv Q, Gan ZY, Liu S (2011) Bonding of carbon nanotubes onto microelectrodes by localized induction. Sens Actuators A:Phys 170:202

    Article  Google Scholar 

  • Chen CX, Jin TN, Zhang YF (2012) Progress in improvement methods of carbon nanotube/metal contact. J Inorg Mater 27:449

    Article  Google Scholar 

  • Daw B (1983) Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys Rev Lett 50:1285

    Article  Google Scholar 

  • De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535

    Article  Google Scholar 

  • Dong LF, Youkey S, Bush J, Jiao J (2007) Effects of local Joule heating on the reduction of contact resistance between carbon nanotubes and metal electrodes. J Appl Phys 101:024320

    Article  Google Scholar 

  • Franklin AD et al (2012) Sub-10 nm carbon nanotube transistor. Nano Lett 12:758

    Article  Google Scholar 

  • Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695

    Article  Google Scholar 

  • Hoover WG (1986) Constant-pressure equations of motion Phys Rev A 34:2499

    Google Scholar 

  • Kutana A, Giapis KP (2006) Atomistic simulations of electrowetting in carbon nanotubes. Nano Lett 6:656

    Article  Google Scholar 

  • Peng Y, Cullis T, Inkson B (2009) Bottom–up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder. Nano Lett 9:91

    Article  Google Scholar 

  • Plimpton SJ (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117:1

    Article  MATH  Google Scholar 

  • Shulaker MM et al (2013) Carbon nanotube computer. Nature 501:7468

    Article  Google Scholar 

  • Song XH, Zhao HD (2014) Computational study on bonding of carbon nanotubes onto metallic substrates. Microsyst Technol 20:397

    Article  Google Scholar 

  • Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112:6472

    Article  Google Scholar 

  • Wang T, Jeppson K, Ye L, Liu J (2011) Carbon-nanotube through-silicon via interconnects for three-dimensional integration. Small 7:2313

    Article  Google Scholar 

  • Woo Y, Duesberg GS, Roth S (2007) Reduced contact resistance between an individual single-walled carbon nanotube and a metal electrode by a local point annealing. Nanotechnology 18:095203

    Article  Google Scholar 

  • Yang J, Hu W, Xiao S (2007) Surface melting of close-packed Mg(0001). Solid State Commun 143:545

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (Grant No. 61106111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Liu, J., Li, H. et al. Atomistic simulation of electrical enhanced nanowelding of carbon nanotube to metal. Microsyst Technol 21, 2215–2219 (2015). https://doi.org/10.1007/s00542-014-2341-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-014-2341-2

Keywords

Navigation