Skip to main content
Log in

Computation of capacitance and electrostatic forces for the electrostatically driving actuators considering fringe effects

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Many micro-electro-mechanical systems sensors and actuators adopted electrostatically driving structures, whose electrostatic forces or driving voltages should be considered and evaluated based on calculating the capacitance and electrostatic forces of the structures, such as parallel plate capacitors, plate combs and sector combs. Generally, calculation of the capacitance and electrostatic forces are neglecting the fringe effects which would be resulted in the estimation errors of electrostatic forces even the driving voltages, and this could bring forth the failure of the device design. So in this paper, we considered the fringe effects and modified the conventional equations to better estimate the capacitances and the electrostatic forces of the electrostatically driving structures. Through computing and simulation, the results show that the fringe effects could have great effects on the capacitances and electrostatic forces or driving voltages in most situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amaya S, Dao DV, Sugiyama S (2009) Development of polymer electrostatic comb-drive actuator using hot embossing and ultraprecision cutting technology. J Micro/Nanolith MEMS MOEMS 8(4):043065

    Article  Google Scholar 

  • Amaya S, Dao DV, Sugiyama S (2011) Novel fabrication process for a monolithic PMMA torsion mirror and vertical comb actuator. J Micromech Microeng 21:065032

    Article  Google Scholar 

  • Ataman C, Urey H (2006) Modeling and characterization of comb-actuated resonant microscanners. J Micromech Microeng 16:9–16

    Article  Google Scholar 

  • Bakri-Kassem M, Mansour RR (2004) Two movable-plate nitride loaded MEMS variable capacitor. IEEE Trans Microw Theory Tech 52(3):831–837

    Article  Google Scholar 

  • Beyeler F, Muntwyler S, Nelson BJ (2009) A six-axis MEMS force-torque sensor with micro-Newton and nano-Newtonmeter resolution. J Microelectromechanical Syst 18(2):433–441

    Article  Google Scholar 

  • Borovic B, Lewis FL, Liu AQ, Kolesar ES, Popa D (2006) The lateral instability problem in electrostatic comb drive actuators: modeling and feedback control. J Micromech Microeng 16:1233–1241

    Article  Google Scholar 

  • Carlen ET, Heng KH, Bakshi S, Pareek A, Mastrangelo CH (2005) High-aspect ratio vertical comb-drive actuator with small self-aligned finger gaps. J Microelectromechanical Syst 14(5):1144–1155

    Article  Google Scholar 

  • Chen C, Lee C (2004) Design and modeling for comb drive actuator with enlarged static displacement. Sens Actuators A 115:530–539

    Article  Google Scholar 

  • Chen B, Miao J (2007) Influence of deep RIE tolerances on comb-drive actuator performance. J Phys D Appl Phys 40:970–976

    Article  Google Scholar 

  • Chena YC, Chang ICM, Chena R, Houc MTK (2008) On the side instability of comb-fingers in MEMS electrostatic devices. Sens Actuators A 148:201–210

    Article  Google Scholar 

  • Chiou JC, Lin YJ (2005) A novel large displacement electrostatic actuator: pre-stress comb-drive actuator. J Micromech Microeng 15:1641–1648

    Article  Google Scholar 

  • Elata D, Leus V (2005) How slender can comb-drive fingers be? J Micromech Microeng 15:1055–1059

    Article  Google Scholar 

  • Elshurafa AM, Khirallah K, Tawfik HH, Emira A, Abdel Aziz AK, Sedky SM (2011) Nonlinear dynamics of spring softening and hardening in folded-MEMS comb drive resonators. J Microelectromechanical Syst 20(4):943–958

    Article  Google Scholar 

  • Engelen JBC, Abelmann L, Elwenspoek MC (2010) Optimized comb-drive finger shape for shock-resistant actuation. J Micromech Microeng 20:105003

    Article  Google Scholar 

  • Eswaran P, Malarvizhi S (2012) Simulation analysis of MEMS based capacitive differential pressure sensor for aircraft application. Adv Mater Res 403–408:4152–4156

    Google Scholar 

  • Fang DM, Yuan Q, Li XH, Zhang HX (2010) Electrostatically driven tunable radio frequency inductor. Microsyst Technol 16:2119–2122

    Article  Google Scholar 

  • Guo ZY, Lin LT, Zhao QC, Yang ZC (2010) A lateral-axis microelectromechanical tuning-fork gyroscope with decoupled comb drive operating at atmospheric pressure. J Microelectromechanical Syst 19(3):458–468

    Article  Google Scholar 

  • Hammer H (2010) Analytical model for comb-capacitance fringe fields. J Microelectromechanical Syst 19(1):175–182

    Article  Google Scholar 

  • Harness TY, Syms RR (2000) Characteristic modes of electrostatic comb-drive X-Y microactuators. J Micromech Microeng 10:7–14

    Article  Google Scholar 

  • Harouche IP, Shafai C (2005) Simulation of shaped comb drive as a stepped actuator for microtweezers application. Sens Actuators A 123–124:540–546

    Article  Google Scholar 

  • Huang W, Ganyu L (2004) Analysis of lateral instability of in-plane comb drive MEMS actuators based on a two-dimensional model. Sens Actuators A 113:78–85

    Article  Google Scholar 

  • Jaecklin VP, Linder C, de Rooij NF, Moret JM (1992) Micromechanical comb actuators with low driving voltage. J Micromech Microeng 2:250–255

    Article  Google Scholar 

  • Jeong HM, Ha S (2005) Dynamic analysis of a resonant comb-drive micro-actuator in linear and nonlinear regions. Sens Actuators A 125:59–68

    Article  Google Scholar 

  • Kang S, Kim HC, Chun K (2009) A low-loss, single-pole, four-throw RF MEMS switch driven by a double stop comb drive. J Micromech Microeng 19:035011

    Article  Google Scholar 

  • Kim M, Park JH, Jeon JA, Yoo BW, Park IH, Kim YK (2009) High fill-factor micromirror array using a self-aligned vertical comb drive actuator with two rotational axes. J Micromech Microeng 19:035014

    Article  Google Scholar 

  • Lee YM, Toda M, Esashi M, Ono T (2011) Micro wishbone interferometer for fourier transform infrared spectrometry. J Micromech Microeng 21:065039 (9 pp)

    Article  Google Scholar 

  • Naito Y, Nakamura K, Onishi K (2010) RF-MEMS switching devices using vertical comb-drive actuation in the CMOS process. J Micromech Microeng 20:045001

    Article  Google Scholar 

  • Rajagopalan J, Saif MTA (2011) MEMS sensors and microsystems for cellmechanobiology. J Micromech Microeng 21:054002

    Article  Google Scholar 

  • Sun Y, Nelson BJ, Potasek DP, Enikov E (2002) A bulkmicrofabricated multi-axis capacitive cellular force sensor using transverse comb drives. J Micromech Microeng 12:832–840

    Article  Google Scholar 

  • Tilleman MM (2004) Analysis of electrostatic comb-driven actuators in linear and nonlinear regions. Int J Solids Struct 41:4889–4898

    Article  MATH  Google Scholar 

  • Tu CC, Fanchiang K, Liu CH (2006) Rotary electrostatic micromirror switches using wafer-scale processing and assembly. Microsyst Technol 12:1099–1108

    Article  Google Scholar 

  • van Spengen WM, Heeres EC (2007) A method to extract the lateral and normal components of motion from the capacitance change of a moving MEMS comb drive. J Micromech Microeng 17:447–451

    Article  Google Scholar 

  • van Spengen WM, Oosterkamp TH (2007) A sensitive electronic capacitance measurement system to measure the comb drive motion of surface micromachined MEMS devices. J Micromech Microeng 17:828–834

    Article  Google Scholar 

  • Yang B, Lee C, Kotlanka RK, Xie J, Lim SP (2010) A MEMS rotary comb mechanism for harvesting the kinetic energy of planar vibrations. J Micromech Microeng 20:065017

    Article  Google Scholar 

  • Yang PF, Peng CR, Fang DM, Wen XL, Xia SH (2013) Design, fabrication and application of an SOI-based resonant electric field microsensor with coplanar comb-shaped electrodes. J Micromech Microeng 23:055002

    Article  Google Scholar 

  • Yeh JA, Jiang SS, Lee C (2006) MOEMS variable optical attenuators using rotary comb drive actuators. IEEE Photonics Technol Lett 18(10):1170–1172

    Article  Google Scholar 

  • Zhang BZ, Fang DM (2009) Modeling and modification of the parallel plate variable MEMS capacitors considering deformation issue. Mech Mach Theory 44:647–655

    Article  MATH  Google Scholar 

  • Zhou G, Dowd P (2003) Tilted folded-beam suspension for extending the stable travel range of comb-drive actuators. J Micromech Microeng 13:178–183

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by funds of National Natural Science Foundation of China (No. 61201078, No. 61101049, No. 61302032, No. 61327810).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongming Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, D., Zheng, F., Chen, B. et al. Computation of capacitance and electrostatic forces for the electrostatically driving actuators considering fringe effects. Microsyst Technol 21, 2089–2096 (2015). https://doi.org/10.1007/s00542-014-2322-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-014-2322-5

Keywords

Navigation