Skip to main content
Log in

A comparison of invasive arterial blood pressure measurement with oscillometric non-invasive blood pressure measurement in patients with sepsis

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript
  • 4 Altmetric

Abstract

Purpose

This study aimed to compare non-invasive oscillometric blood pressure (NIBP) measurement with invasive arterial blood pressure (IBP) measurement in patients with sepsis.

Methods

We conducted a retrospective study to evaluate the agreement between IBP and NIBP using the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. Paired blood pressure measurements of mean arterial pressure (MAP), systolic blood pressure (SBP), and diastolic blood pressure (DBP) were compared using Bland–Altman analysis and paired Student’s t test. We also focus on the effect of norepinephrine (NE) on the agreement between the two methods and the association between blood pressure and mortality during intensive care unit (ICU) stay.

Results

A total of 96,673 paired blood pressure measurements from 6060 unique patients were analyzed in the study. In Bland–Altman analysis, the bias (± SD, 95% limits of agreement) was 6.21 mmHg (± 12.05 mmHg, − 17.41 to 29.83 mmHg) for MAP, 0.39 mmHg (± 19.25 mmHg, − 37.34 to 38.12 mmHg) for SBP, and 0.80 mmHg (± 12.92 mmHg, − 24.52 to 26.12 mmHg) for DBP between the two techniques. Similarly, large limits of agreement were shown in different groups of NE doses. NE doses significantly affected the agreement between IBP and NIBP. SBP between the two methods gave an inconsistent assessment of patients’ risk of ICU mortality.

Conclusion

IBP and NIBP were not interchangeable in septic patients. Clinicians should be aware that non-invasive MAP was clinically and significantly underestimated invasive MAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All Data was extracted from the Medical Information Mart for Intensive Care IV v1.0, a freely accessible public database constructed by the Massachusetts Institute of Technology Computational Physiology Laboratory (https://mimic.mit.edu/).

Abbreviations

IBP:

Invasive arterial blood pressure

NIBP:

Non-invasive oscillometric blood pressure

NE:

Norepinephrine

ICU:

Intensive care unit

MIMIC-IV:

Medical Information Mart for Intensive Care IV

BMI:

Body mass index

SOFA:

Sequential Organ Failure Assessment

SAPS II:

Simplified Acute Physiology Score II

CVP:

Central venous pressure

IMAP:

Invasive mean arterial pressure

ISBP:

Invasive systolic blood pressure

IDBP:

Invasive diastolic blood pressure

NIMAP:

Non-invasive mean arterial pressure

NISBP:

Non-invasive systolic blood pressure

NIDBP:

Non-invasive diastolic blood pressure

MAP:

Mean arterial pressure

SBP:

Systolic blood pressure

DBP:

Diastolic blood pressure

AAMI:

Association for the Advancement of Medical Instrumentation

SD:

Standard deviation

IQR:

Interquartile range

LOA:

Limits of agreement

AKI:

Acute kidney injury

References

  1. Meidert AS, Saugel B. Techniques for non-invasive monitoring of arterial blood pressure. Front Med (Lausanne). 2017;4:231. https://doi.org/10.3389/fmed.2017.00231.

    Article  PubMed  Google Scholar 

  2. Pour-Ghaz I, Manolukas T, Foray N, Raja J, Rawal A, Ibebuogu UN, Khouzam RN. Accuracy of non-invasive and minimally invasive hemodynamic monitoring: where do we stand? Ann Transl Med. 2019;7:421. https://doi.org/10.21037/atm.2019.07.06.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lakhal K, Ehrmann S, Boulain T. Noninvasive BP monitoring in the critically Ill: time to abandon the arterial catheter? Chest. 2018;153:1023–39. https://doi.org/10.1016/j.chest.2017.10.030.

    Article  PubMed  Google Scholar 

  4. Mirdamadi A, Etebari M. Comparison of manual versus automated blood pressure measurement in intensive care unit, coronary care unit, and emergency room. ARYA Atheroscler. 2017;13:29–34.

    PubMed  PubMed Central  Google Scholar 

  5. Watson S, Aguas M, Bienapfl T, Colegrove P, Foisy N, Jondahl B, Yosses MB, Yu L, Anastas Z. Postanesthesia patients with large upper arm circumference: is use of an “extra-long” adult cuff or forearm cuff placement accurate? J Perianesth Nurs. 2011;26:135–42. https://doi.org/10.1016/j.jopan.2011.02.001.

    Article  PubMed  Google Scholar 

  6. Hromádka M, Tůmová P, Rokyta R, Seidlerová J. [Copy] Blood pressure measurement in patients with cardiogenic shock: the effect of norepinephrine. Blood Press Monit. 2019;24:213–20. https://doi.org/10.1097/MBP.0000000000000393.

    Article  PubMed  Google Scholar 

  7. Rebesco MR, Pinkston MC, Smyrnios NA, Weisberg SN. A comparison of non-invasive blood pressure measurement strategies with intra-arterial measurement. Prehosp Disaster Med. 2020;35:516–23. https://doi.org/10.1017/S1049023X20000916.

    Article  PubMed  Google Scholar 

  8. Hamzaoui O, Scheeren TWL, Teboul J-L. Norepinephrine in septic shock: when and how much? Curr Opin Crit Care. 2017;23:342–7. https://doi.org/10.1097/MCC.0000000000000418.

    Article  PubMed  Google Scholar 

  9. Lee GT, Hwang SY, Jo IJ, Kim TR, Yoon H, Park JH. Associations between mean arterial pressure and 28-day mortality according to the presence of hypertension or previous blood pressure level in critically ill sepsis patients. J Thorac Dis. 2019;11:1980–8. https://doi.org/10.21037/jtd.2019.04.108.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kobayashi N, Nakagawa A, Kudo D, Ishigaki T, Ishizuka H, Saito K. Arterial blood pressure correlates with 90-day mortality in sepsis patients: a retrospective multicenter derivation and validation study using high-frequency continuous data. Blood Press Monit. 2019;24:225–33. https://doi.org/10.1097/MBP.0000000000000398.

    Article  PubMed  Google Scholar 

  11. Johnson A, Bulgarelli L, Pollard T, Horng S, Celi LA. Mark R. MIMIC-IV (version 1.0). PhysioNet. 2021. https://doi.org/10.13026/s6n6-xd98.

  12. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:801–10. https://doi.org/10.1001/jama.2016.0287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lehman LH, Saeed M, Talmor D, Mark R, Malhotra A. Methods of blood pressure measurement in the ICU. Crit Care Med. 2013;41:34–40. https://doi.org/10.1097/CCM.0b013e318265ea46.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kaufmann T, Cox EGM, Wiersema R, Hiemstra B, Eck RJ, Koster G. Non-invasive oscillometric versus invasive arterial blood pressure measurements in critically ill patients: a post hoc analysis of a prospective observational study. J Crit Care. 2020;57:118–23. https://doi.org/10.1016/j.jcrc.2020.02.013.

    Article  PubMed  Google Scholar 

  15. Bur A, Herkner H, Vlcek M, Woisetschläger C, Derhaschnig U, Delle Karth G. Factors influencing the accuracy of oscillometric blood pressure measurement in critically ill patients. Crit Care Med. 2003;31:793–9. https://doi.org/10.1097/01.CCM.0000053650.12025.1A.

    Article  PubMed  Google Scholar 

  16. Saherwala AA, Stutzman SE, Osman M, Kalia J, Figueroa SA, Olson DM, Aiyagari V. Correlation of noninvasive blood pressure and invasive intra-arterial blood pressure in patients treated with vasoactive medications in a neurocritical care unit. Neurocrit Care. 2018;28:265–72. https://doi.org/10.1007/s12028-018-0521-0.

    Article  PubMed  Google Scholar 

  17. Hohn A, Defosse JM, Becker S, Steffen C, Wappler F, Sakka SG. Non-invasive continuous arterial pressure monitoring with Nexfin does not sufficiently replace invasive measurements in critically ill patients. Br J Anaesth. 2013;111:178–84. https://doi.org/10.1093/bja/aet023.

    Article  CAS  PubMed  Google Scholar 

  18. Meidert AS, Dolch ME, Mühlbauer K, Zwissler B, Klein M, Briegel J, Czerner S. Oscillometric versus invasive blood pressure measurement in patients with shock: a prospective observational study in the emergency department. J Clin Monit Comput. 2021;35:387–93. https://doi.org/10.1007/s10877-020-00482-2.

    Article  PubMed  Google Scholar 

  19. Yüksel S, Altun-Uğraş G, Altınok N, Demir N. The effect of cuff size on blood pressure measurement in obese surgical patients: a prospective crossover clinical trial. Florence Nightingale J Nurs. 2020;28:205–12. https://doi.org/10.5152/FNJN.2020.19119.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mourad J-J, Lopez-Sublet M, Aoun-Bahous S, Villeneuve F, Jaboureck O, Dourmap-Collas C. Impact of miscuffing during home blood pressure measurement on the prevalence of masked hypertension. Am J Hypertens. 2013;26:1205–9. https://doi.org/10.1093/ajh/hpt084.

    Article  PubMed  Google Scholar 

  21. Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Crit Care Med. 2021;49:e1063–143. https://doi.org/10.1097/CCM.0000000000005337.

    Article  PubMed  Google Scholar 

  22. Guinot P-G, Bernard E, Levrard M, Dupont H, Lorne E. Dynamic arterial elastance predicts mean arterial pressure decrease associated with decreasing norepinephrine dosage in septic shock. Crit Care. 2015;19:14. https://doi.org/10.1186/s13054-014-0732-5.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Monge García MI, Santos A, Del Diez CB, Guijo González P, Gracia Romero M, Gil Cano A, Cecconi M. Noradrenaline modifies arterial reflection phenomena and left ventricular efficiency in septic shock patients: a prospective observational study. J Crit Care. 2018;47:280–6. https://doi.org/10.1016/j.jcrc.2018.07.027.

    Article  CAS  PubMed  Google Scholar 

  24. Wittrock M, Scholze A, Compton F, Schaefer J-H, Zidek W, Tepel M. Noninvasive pulse wave analysis for the determination of central artery stiffness. Microvasc Res. 2009;77:109–12. https://doi.org/10.1016/j.mvr.2008.10.001.

    Article  PubMed  Google Scholar 

  25. Pinsky MR. Defining the boundaries of bedside pulse contour analysis: dynamic arterial elastance. Crit Care. 2011;15:120. https://doi.org/10.1186/cc9986.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gruenewald M, Meybohm P, Renner J, Broch O, Caliebe A, Weiler N. Effect of norepinephrine dosage and calibration frequency on accuracy of pulse contour-derived cardiac output. Crit Care. 2011;15:R22. https://doi.org/10.1186/cc9967.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Laurent S, Cockcroft J, van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605. https://doi.org/10.1093/eurheartj/ehl254.

    Article  PubMed  Google Scholar 

  28. Pytte M, Dybwik K, Sexton J, Straume B, Nielsen EW. Oscillometric brachial mean artery pressures are higher than intra-radial mean artery pressures in intensive care unit patients receiving norepinephrine. Acta Anaesthesiol Scand. 2006;50:718–21. https://doi.org/10.1111/j.1399-6576.2006.01045.x.

    Article  CAS  PubMed  Google Scholar 

  29. Riley LE, Chen GJ, Latham HE. Comparison of noninvasive blood pressure monitoring with invasive arterial pressure monitoring in medical ICU patients with septic shock. Blood Press Monit. 2017;22:202–7. https://doi.org/10.1097/MBP.0000000000000258.

    Article  PubMed  Google Scholar 

  30. Ait-Oufella H, Bakker J. Understanding clinical signs of poor tissue perfusion during septic shock. Intensive Care Med. 2016;42:2070–2. https://doi.org/10.1007/s00134-016-4250-6.

    Article  PubMed  Google Scholar 

  31. Smischney NJ, Shaw AD, Stapelfeldt WH, Boero IJ, Chen Q, Stevens M, Khanna AK. Postoperative hypotension in patients discharged to the intensive care unit after non-cardiac surgery is associated with adverse clinical outcomes. Crit Care. 2020;24:682. https://doi.org/10.1186/s13054-020-03412-5.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Khanna AK, Kinoshita T, Natarajan A, Schwager E, Linn DD, Dong J. Association of systolic, diastolic, mean, and pulse pressure with morbidity and mortality in septic ICU patients: a nationwide observational study. Ann Intensive Care. 2023;13:9. https://doi.org/10.1186/s13613-023-01101-4.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Maheshwari K, Nathanson BH, Munson SH, Khangulov V, Stevens M, Badani H. The relationship between ICU hypotension and in-hospital mortality and morbidity in septic patients. Intensive Care Med. 2018;44:857–67. https://doi.org/10.1007/s00134-018-5218-5.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Al-Husinat L, Alsabbah A, Hmaid AA, Athamneh R, Adwan M, Hourani MN. Norepinephrine may exacerbate septic acute kidney injury: a narrative review. J Clin Med. 2023. https://doi.org/10.3390/jcm12041373.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express their sincere appreciation to the staff members of the Massachusetts Institute of Technology Computational Physiology Laboratory and the Beth Israel Deaconess Medical Center, who have participated in the Medical Information Mart for Intensive Care IV.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

ZJ: Conceptualization, Methodology, Formal analysis, Data Curation, Writing—Original Draft. SL: Conceptualization, Methodology, Writing—Original Draft. WL: Conceptualization, Writing—Review and Editing. FY: Conceptualization, Writing—Review and Editing. YZ: Formal analysis, Writing—Original Draft. HL: Formal analysis, Writing—Original Draft. JL: Formal analysis, Writing—Original Draft. ZZ: Formal analysis, Writing—Original Draft. JLZ: Conceptualization, Methodology, Writing—Review and Editing.

Corresponding author

Correspondence to Junling Zuo.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Ethics approval and consent to participate

The author who had finished the online training for the Collaborative Institutional Training Initiative Program can access the database (Record ID 40486481). The MIMIC-IV v1.0 contain no identifiers and are publicly available for studies of critical care. The Institutional Review Board approval and the need for informed consent was waived.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

540_2023_3304_MOESM1_ESM.pdf

Supplementary file1 Figure S1. The association between MAP and ICU mortality. Error bars show 95% confidence intervals of the mortality rates. No difference between MAP measurements in terms of their ICU mortality was observed (p>0.05) based on the chi-square test. ICU intensive care unit, MAP mean arterial pressure. (PDF 387 KB)

540_2023_3304_MOESM2_ESM.pdf

Supplementary file2 Figure S2. The association between DBP and ICU mortality. Error bars show 95% confidence intervals of the mortality rates. No difference between DBP measurements in terms of their ICU mortality was observed (p>0.05) based on the chi-square test. ICU intensive care unit, DBP diastolic blood pressure. (PDF 387 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Li, S., Wang, L. et al. A comparison of invasive arterial blood pressure measurement with oscillometric non-invasive blood pressure measurement in patients with sepsis. J Anesth 38, 222–231 (2024). https://doi.org/10.1007/s00540-023-03304-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-023-03304-2

Keywords

Navigation