Skip to main content

Advertisement

Log in

Myotoxicity of local anesthetics is equivalent in individuals with and without predisposition to malignant hyperthermia

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

Malignant hyperthermia (MH) is an inherited muscle disorder caused by abnormal elevations of intracellular calcium (Ca2+) in skeletal muscle. There are several reports of myotoxicity caused by local anesthetics, and the increased intracellular Ca2+ is considered to be an important cause. However, there is insufficient evidence regarding myotoxicity in MH-susceptible individuals when large doses of local anesthetics are administered. This study investigated the effect of MH predisposition on myotoxicity.

Methods

Human skeletal muscle samples were obtained from 22 individuals to determine susceptibility to MH, and were evaluated according to whether their Ca2+-induced Ca2+ release (CICR) rates were accelerated or not. This study was performed using surplus muscle that remained after the CICR rate test. We calculated the 50% effective concentration (EC50) values of three local anesthetics, namely lidocaine, levobupivacaine, and ropivacaine using the ratiometric dye Fura-2 AM. Significance was tested using the unpaired t test.

Results

In the accelerated and unaccelerated groups, respectively, the mean ± SD of the EC50 values were 1.52 ± 0.72 and 1.75 ± 0.37 mM for lidocaine (p = 0.42), 0.72 ± 0.36 and 0.79 ± 0.46 mM for levobupivacaine (p = 0.68), and 1.21 ± 0.35 and 1.62 ± 0.57 mM for ropivacaine (p = 0.06). These values were similar in individuals with and without MH predisposition.

Conclusion

The myotoxicity of local anesthetics was equivalent in individuals with and without predisposition to MH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Halsall PJ, Ellis FR. Malignant hyperthermia. Anaesth Intensive Care. 2005;14:192–4.

    Article  Google Scholar 

  2. Schneiderbanger D, Johannsen S, Roewer N, Schuster F. Management of malignant hyperthermia: diagnosis and treatment. Ther Clin Risk Manag. 2014;10:355–62.

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Zink W, Bohl JRE, Hacke N, Sinner B, Martin E, Graf BM. The long term myotoxic effects of bupivacaine and ropivacaine after continuous peripheral nerve blocks. Anesth Analg. 2005;101:548–54.

    Article  PubMed  CAS  Google Scholar 

  4. Neal JM, Salinas FV, Choi DS. Local anesthetic-induced myotoxicity after continuous adductor canal block. Reg Anesth Pain Med. 2016;41:723–7.

    Article  PubMed  CAS  Google Scholar 

  5. Benoit PW, Yagiela A, Fort NF. Pharmacologic correlation between local anesthetic-induced myotoxicity and disturbances of intracellular calcium distribution. Toxicol Appl Pharmacol. 1980;52:187–98.

    Article  PubMed  CAS  Google Scholar 

  6. Plank C, Hofmann P, Gruber M, Bollwein G, Graf BM, Zink W, et al. Modification of bupivacaine-induced myotoxicity with dantrolene and caffeine in vitro. Anesth Analg. 2016;122:418–23.

    Article  PubMed  CAS  Google Scholar 

  7. Harrison GG, Morrell DF. Response of mhs swine to i.v. infusion of lignocaine and bupivacaine. Br J Anaesth. 1980;52:385–7.

    Article  PubMed  CAS  Google Scholar 

  8. Wingard DW, Bobko S. Failure of lidocaine to trigger porcine malignant hyperthermia. Anesth Analg. 1979;58:99–103.

    Article  PubMed  CAS  Google Scholar 

  9. Ibarra MCA, Ichihara Y, Hikita M, Yoshida K, Junji S, Maehara Y, et al. Effect of bupivacaine enantiomers on Ca2+ release from sarcoplasmic reticulum in skeletal muscle. Eur J Pharmacol. 2005;512:77–83.

    Article  CAS  Google Scholar 

  10. Maemura Y. Effect of ropivacaine on Ca function of skinned skeletal muscle. Masui. 2002;51:19–24.

    PubMed  Google Scholar 

  11. Endo M, Iino M. Measurement of Ca2 + release in skinned fibers from skeletal muscle. Methods Enzymol. 1988;157:12–26.

    Article  PubMed  CAS  Google Scholar 

  12. Ohta T, Endo M, Nakano T, Morohoshi Y, Wanikawa K, Ohga A. Ca-induced Ca release in malignant hyperthermia-susceptible pig skeletal muscle. Am J Physiol. 1989;256:C358–67.

    Article  PubMed  CAS  Google Scholar 

  13. Oku S, Mukaida K, Nosaka S, Sai Y, Maehara Y, Yuge O. Comparison of the in vitro caffeine-halothane contracture test with the Ca-induced Ca release rate test in patients suspected of having malignant hyperthermia susceptibility. J Anesth. 2000;14:6–13.

    Article  PubMed  CAS  Google Scholar 

  14. Kobayashi M, Mukaida K, Migita T, Hamada H, Kawamoto M, Yuge O. Analysis of human cultured myotubes responses mediated by ryanodine receptor 1. Anaesth Intensive Care. 2011;39:252–61.

    PubMed  CAS  Google Scholar 

  15. Hofmann P, Metterlein T, Bollwein G, Gruber M, Plank C, Graf BM, et al. The myotoxic effect of bupivacaine and ropivacaine on myotubes in primary mouse cell culture and an immortalized cell line. Anesth Analg. 2013;117:634–40.

    Article  PubMed  CAS  Google Scholar 

  16. Zink W, Seif C, Bohl JRE, Hacke N, Braun PM, Sinner B, et al. The acute myotoxic effects of bupivacaine and ropivacaine after continuous peripheral nerve blockades. Anesth Analg. 2003;97:1173–9 (table of contents).

    Article  PubMed  CAS  Google Scholar 

  17. Zhang C, Phamonvaechavan P, Rajan A, Poon DY, Topcu-Yilmaz P, Guyton DL. Concentration-dependent bupivacaine myotoxicity in rabbit extraocular muscle. J AAPOS. 2010;14:323–7.

    Article  PubMed  Google Scholar 

  18. Benoit PW, Belt WD. Destruction and regeneration of skeletal muscle after treatment with a local anaesthetic, bupivacaine (Marcaine). J Anat. 1970;107:547–56.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. McLoon LK, Nguyen LT, Wirtschafter J. Time course of the regenerative response in bupivacaine injured orbicularis oculi muscle. Cell Tissue Res. 1998;294:439–47.

    Article  PubMed  CAS  Google Scholar 

  20. Zink W, Graf BM. Local anesthetic myotoxicity. Reg Anesth Pain Med.;29:333–40.

  21. Melzer W, Herrmann-Frank A, Lüttgau HC. The role of Ca2+ ions in excitation-contraction coupling of skeletal muscle fibres. Biochim Biophys Acta. 1995;1241:59–116.

    Article  PubMed  Google Scholar 

  22. Schiemann AH, Stowell KM. Comparison of pathogenicity prediction tools on missense variants in RYR1 and CACNA1S associated with malignant hyperthermia. Br J Anaesth. 2016;117:124–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Shoshan-Barmatz V, Zchut S. The interaction of local anesthetics with the ryanodine receptor of the sarcoplasmic reticulum. J Membr Biol. 1993;133:171–81.

    Article  PubMed  CAS  Google Scholar 

  24. Hyvelin JM, Martin C, Roux E, Marthan R, Savineau JP. Human isolated bronchial smooth muscle contains functional ryanodine/caffeine-sensitive Ca-release channels. Am J Respir Crit Care Med. 2000;162:687–94.

    Article  PubMed  CAS  Google Scholar 

  25. Gordienko DV, Harhun MI, Kustov MV, Pucovský V, Bolton TB. Sub-plasmalemmal [Ca2+]i upstroke in myocytes of the guinea-pig small intestine evoked by muscarinic stimulation: IP3R-mediated Ca2+ release induced by voltage-gated Ca2+ entry. Cell Calcium. 2008;43:122–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Prakriya M, Lewis RS. Store-operated calcium channels. Physiol Rev. 2015;95:1383–436.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Franco-Obregón A, Lansman JB. Changes in mechanosensitive channel gating following mechanical stimulation in skeletal muscle myotubes from the mdx mouse. J Physiol. 2002;539:391–407.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Riazi S, Kraeva N, Muldoon SM, Dowling J, Ho C, Petre M-A, et al. Malignant hyperthermia and the clinical significance of type-1 ryanodine receptor gene (RYR1) variants: proceedings of the 2013 MHAUS Scientific Conference. Can J Anesth. 2014;61:1040–9.

    Article  PubMed  Google Scholar 

  29. Hopkins PM, Rüffert H, Snoeck MM, Girard T, Glahn KPE, Ellis FR, et al. European Malignant Hyperthermia Group guidelines for investigation of malignant hyperthermia susceptibility. Br J Anaesth. 2015;115:531–9.

    Article  PubMed  CAS  Google Scholar 

  30. Wehner M, Rueffert H, Koenig F, Meinecke CD, Olthoff D. The Ile2453Thr mutation in the ryanodine receptor gene 1 is associated with facilitated calcium release from sarcoplasmic reticulum by 4-chloro-m-cresol in human myotubes. Cell Calcium. 2003;34:163–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

A Grant-in-Aid (Grant Number 16K20100) for Scientific Research from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachiko Otsuki.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otsuki, S., Yasuda, T., Mukaida, K. et al. Myotoxicity of local anesthetics is equivalent in individuals with and without predisposition to malignant hyperthermia. J Anesth 32, 616–623 (2018). https://doi.org/10.1007/s00540-018-2526-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-018-2526-4

Keywords

Navigation