Skip to main content

Advertisement

Log in

Nicorandil increased the cerebral blood flow via nitric oxide pathway and ATP-sensitive potassium channel opening in mice

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 04 May 2018

Abstract

Purpose

Nicorandil has dual properties and acts as a nitric oxide donor and an ATP-sensitive potassium (KATP) channel opener. Considering its pharmacological profile, nicorandil might exert protective effects on the brain as well as on the heart. The purpose of this study was to directly evaluate the effect of nicorandil on cerebral blood flow (CBF) in mice using a transcranial Doppler method.

Methods

Under general anesthesia, the nicorandil groups received a single-bolus intraperitoneal injection of the respective doses of nicorandil (1, 5, or 10 mg/kg), while the control group received vehicle only. CBF was measured using a transcranial Doppler flowmeter. NG-nitro-l-arginine methyl ester and glibenclamide were used to elucidate the underlying mechanisms.

Results

A single-bolus injection of 1 mg/kg of nicorandil increased the CBF (11.6 ± 3.6 vs. 0.5 ± 0.7%, p < 0.001) without affecting the heart rate and blood pressure. On the contrary, 5 and 10 mg/kg of nicorandil significantly decreased the cerebral blood flow by decreasing the mean blood pressure below the cerebral autoregulation range. The positive effect of 1 mg/kg of nicorandil on the cerebral blood flow was inhibited by co-administration of either NG-nitro-l-arginine methyl ester or glibenclamide.

Conclusions

A clinical dose of nicorandil increases CBF without affecting systemic hemodynamics. The positive effect of nicorandil on CBF is most likely caused via both the nitric oxide pathway and KATP channel opening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Taira N. Nicorandil as a hybrid between nitrates and potassium channel activators. Am J Cardiol. 1989;63:18J–24J.

    Article  CAS  PubMed  Google Scholar 

  2. IONA Study Group. Impact of nicorandil in angina: subgroup analyses. Heart. 2004;90:1427–30.

    Article  PubMed Central  Google Scholar 

  3. Matsuo H, Watanabe S, Segawa T, Yasuda S, Hirose T, Iwama M, Tanaka S, Yamaki T, Matsuno Y, Tomita M, Minatoguchi S, Fujiwara H. Evidence of pharmacologic preconditioning during PTCA by intravenous pretreatment with ATP-sensitive K+ channel opener nicorandil. Eur Heart J. 2003;24:1296–303.

    Article  CAS  PubMed  Google Scholar 

  4. Tarkin JM, Kaski JC. Vasodilator therapy: nitrates and nicorandil. Cardiovasc Drugs Ther. 2016;30:367–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Horinaka S. Use of nicorandil in cardiovascular disease and its optimization. Drugs. 2011;71:1105–19.

    Article  CAS  PubMed  Google Scholar 

  6. Heron-Milhavet L, Xue-Jun Y, Vannucci SJ, Wood TL, Willing LB, Stannard B, Hernandez-Sanchez C, Mobbs C, Virsolvy A, LeRoith D. Protection against hypoxic-ischemic injury in transgenic mice overexpressing Kir6.2 channel pore in forebrain. Mol Cell Neurosci. 2004;25:585–93.

    Article  CAS  PubMed  Google Scholar 

  7. Sun HS, Feng ZP, Miki T, Seino S, French RJ. Enhanced neuronal damage after ischemic insults in mice lacking Kir6.2-containing ATP-sensitive K+ channels. J Neurophysiol. 2006;95:2590–601.

    Article  CAS  PubMed  Google Scholar 

  8. Nakagawa I, Alessandri B, Heimann A, Kempski O. MitoKATP-channel opener protects against neuronal death in rat venous ischemia. Neurosurgery. 2005;57:334–40 (discussion 334–340).

    Article  PubMed  Google Scholar 

  9. Akai K, Wang Y, Sato K, Sekiguchi N, Sugimura A, Kumagai T, Komaru T, Kanatsuka H, Shirato K. Vasodilatory effect of nicorandil on coronary arterial microvessels: its dependency on vessel size and the involvement of the ATP-sensitive potassium channels. J Cardiovasc Pharmacol. 1995;26:541–7.

    Article  CAS  PubMed  Google Scholar 

  10. Ishiyama T, Dohi S, Iida H, Akamatsu S, Ohta S, Shimonaka H. Mechanisms of vasodilation of cerebral vessels induced by the potassium channel opener nicorandil in canine in vivo experiments. Stroke. 1994;25:1644–50.

    Article  CAS  PubMed  Google Scholar 

  11. Iwata K, Iida H, Iida M, Takenaka M, Tanabe K, Fukuoka N, Uchida M. Nicorandil protects pial arterioles from endothelial dysfunction induced by smoking in rats. J Neurosurg Anesthesiol. 2013;25:392–8.

    Article  PubMed  Google Scholar 

  12. Inoue S, Kawaguchi M, Kurehara K, Sakamoto T, Kitaguchi K, Furuya H. Effect of mild hypothermia on nicorandil-induced vasodilation of pial arterioles in cats. Crit Care Med. 2001;29:2162–8.

    Article  CAS  PubMed  Google Scholar 

  13. Kobayashi S, Yamaguchi S, Okada K, Suyama N, Bokura K, Murao M. Effects of nicorandil on regional cerebral blood flow in patients with chronic cerebral infarction. Preliminary communication. Arzneimittelforschung. 1992;42:1086–9.

    CAS  PubMed  Google Scholar 

  14. Rosner MJ, Rosner SD, Johnson AH. Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg. 1995;83:949–62.

    Article  CAS  PubMed  Google Scholar 

  15. Yu D, Fan C, Zhang W, Wen Z, Hu L, Yang L, Feng Y, Yin KJ, Mo X. Neuroprotective effect of nicorandil through inhibition of apoptosis by the PI3K/Akt1 pathway in a mouse model of deep hypothermic low flow. J Neurol Sci. 2015;357:119–25.

    Article  CAS  PubMed  Google Scholar 

  16. Gantenbein M, Attolini L, Bruguerolle B. Kinetics of bupivacaine after nicorandil treatment in mice. J Pharm Pharmacol. 1996;48:749–52.

    Article  CAS  PubMed  Google Scholar 

  17. Gulati P, Singh N. Pharmacological evidence for connection of nitric oxide-mediated pathways in neuroprotective mechanism of ischemic postconditioning in mice. J Pharm Bioallied Sci. 2014;6:233–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gu Y, Zheng G, Xu M, Li Y, Chen X, Zhu W, Tong Y, Chung SK, Liu KJ, Shen J. Caveolin-1 regulates nitric oxide-mediated matrix metalloproteinases activity and blood-brain barrier permeability in focal cerebral ischemia and reperfusion injury. J Neurochem. 2012;120:147–56.

    Article  CAS  PubMed  Google Scholar 

  19. Shafaroodi H, Asadi S, Sadeghipour H, Ghasemi M, Ebrahimi F, Tavakoli S, Hajrasouliha AR, Dehpour AR. Role of ATP-sensitive potassium channels in the biphasic effects of morphine on pentylenetetrazole-induced seizure threshold in mice. Epilepsy Res. 2007;75:63–9.

    Article  CAS  PubMed  Google Scholar 

  20. Eguchi Y, Takahari Y, Higashijima N, Ishizuka N, Tamura N, Kawamura Y, Ishida H. Nicorandil attenuates FeCl(3)-induced thrombus formation through the inhibition of reactive oxygen species production. Circ J. 2009;73:554–61.

    Article  CAS  PubMed  Google Scholar 

  21. Hedna VS, Ansari S, Shahjouei S, Cai PY, Ahmad AS, Mocco J, Qureshi AI. Validity of laser Doppler flowmetry in predicting outcome in murine intraluminal middle cerebral artery occlusion stroke. J Vasc Interv Neurol. 2015;8:74–82.

    PubMed  PubMed Central  Google Scholar 

  22. Phillips SJ, Whisnant JP. Hypertension and the brain. The National High Blood Pressure Education Program. Arch Intern Med. 1992;152:938–45.

    Article  CAS  PubMed  Google Scholar 

  23. Niwa K, Kazama K, Younkin L, Younkin SG, Carlson GA, Iadecola C. Cerebrovascular autoregulation is profoundly impaired in mice overexpressing amyloid precursor protein. Am J Physiol Heart Circ Physiol. 2002;283:H315–23.

    Article  CAS  PubMed  Google Scholar 

  24. Brodmann M, Lischnig U, Lueger A, Stark G, Pilger E. The effect of the K+ agonist nicorandil on peripheral vascular resistance. Int J Cardiol. 2006;111:49–52.

    Article  PubMed  Google Scholar 

  25. Wolf DL, Ferry JJ, Hearron AE, Froeschke MO, Luderer JR. The haemodynamic effects and pharmacokinetics of intravenous nicorandil in healthy volunteers. Eur J Clin Pharmacol. 1993;44:27–33.

    Article  CAS  PubMed  Google Scholar 

  26. Waldman SA, Murad F. Cyclic GMP synthesis and function. Pharmacol Rev. 1987;39:163–96.

    CAS  PubMed  Google Scholar 

  27. Nielsen-Kudsk JE, Boesgaard S, Aldershvile J. K+ channel opening: a new drug principle in cardiovascular medicine. Heart. 1996;76:109–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Horinaka S, Kobayashi N, Yagi H, Mori Y, Matsuoka H. Nicorandil but not ISDN upregulates endothelial nitric oxide synthase expression, preventing left ventricular remodeling and degradation of cardiac function in Dahl salt-sensitive hypertensive rats with congestive heart failure. J Cardiovasc Pharmacol. 2006;47:629–35.

    Article  CAS  PubMed  Google Scholar 

  29. Kaneko T, Saito Y, Hikawa Y, Yasuda K, Makita K. Dose-dependent prophylactic effect of nicorandil, an ATP-sensitive potassium channel opener, on intra-operative myocardial ischaemia in patients undergoing major abdominal surgery. Br J Anaesth. 2001;86:332–7.

    Article  CAS  PubMed  Google Scholar 

  30. Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7:27–31.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang F, White JG, Iadecola C. Nitric oxide donors increase blood flow and reduce brain damage in focal ischemia: evidence that nitric oxide is beneficial in the early stages of cerebral ischemia. J Cereb Blood Flow Metab. 1994;14:217–26.

    Article  CAS  PubMed  Google Scholar 

  32. Ito T, Yamakawa H, Bregonzio C, Terron JA, Falcon-Neri A, Saavedra JM. Protection against ischemia and improvement of cerebral blood flow in genetically hypertensive rats by chronic pretreatment with an angiotensin II AT1 antagonist. Stroke. 2002;33:2297–303.

    Article  CAS  PubMed  Google Scholar 

  33. Greene NH, Lee LA. Modern and evolving understanding of cerebral perfusion and autoregulation. Adv Anesth. 2012;30:97–129.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Seino S, Miki T. Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog Biophys Mol Biol. 2003;81:133–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Japan Society for Promotion of Science (JSPS KAKENHI Grant number 17K11044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masakazu Kotoda.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 131 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotoda, M., Ishiyama, T., Mitsui, K. et al. Nicorandil increased the cerebral blood flow via nitric oxide pathway and ATP-sensitive potassium channel opening in mice. J Anesth 32, 244–249 (2018). https://doi.org/10.1007/s00540-018-2471-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-018-2471-2

Keywords

Navigation