Skip to main content

Advertisement

Log in

Peripheral nerve conduction abnormalities precede morphological alterations in an experimental rat model of sepsis

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

The pathological mechanisms of critical illness polyneuropathy (CIP), an acute neuromuscular disorder, remain unknown. In this study, we evaluated nerve and vascular properties that might account for electrophysiological abnormalities, including reduced nerve conduction amplitude, in the early phase of CIP.

Methods

Rats were administered intravenous saline (C-group; n = 31) or lipopolysaccharide (3 mg/kg/day; L-group; n = 30) for 48 h. Subsequently, tracheotomy was performed and sciatic nerves exposed bilaterally. A catheter was inserted into the left internal carotid artery to measure the mean arterial pressure (MAP). Nerve conduction velocity (NCV), nerve blood flow (NBF), evoked amplitudes, chronaxie, rheobase, and the absolute refractory period (ARP) were measured from the sciatic nerves. Degeneration, myelination, and neutrophil infiltration were examined in the sciatic nerves using histology and electron microscopy.

Results

The NBF (C-group 25 ± 3 ml/100 g/min, L-group 13 ± 3 ml/100 g/min, p < 0.001) was lower in the L-group, but the MAP was similar between groups (C-group 119 ± 17 mmHg, L-group 115 ± 18 mmHg, p = 0.773). LPS also caused a severe reduction in amplitude (C-group 0.9 ± 0.2 mV, L-group 0.2 ± 0.1 mV, p < 0.001), while latency and NCV were not affected. Of note, response amplitudes partially recovered with an increase in stimulus intensity. LPS treatment increased the rheobase and decreased the chronaxie (rheobase: C vs L-group; 0.35 ± 0.07 vs 1.29 ± 0.66 mA, p < 0.001; chronaxie 171 ± 24 vs 42 ± 20 µs, p < 0.001), while ARP was unchanged. No primary axonal degeneration or inflammatory infiltration was observed.

Conclusions

Our findings suggest that primary electrophysiological deterioration is due to threshold alterations rather than morphological alterations after 48 h of LPS treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bolton CF, Gilbert JJ, Hahn AF, Sibbald WJ. Polyneuropathy in critically ill patients. J Neurol Neurosurg Psychiatry. 1984;47:1223–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stevens RD, Dowdy DW, Michaels RK, Mendez-Tellez PA, Pronovost PJ, Needham DM. Neuromuscular dysfunction acquired in critical illness: a systematic review. Intensive Care Med. 2007;33:1876–91.

    Article  PubMed  Google Scholar 

  3. Latronico N, Bolton CF. Critical illness polyneuropathy and myopathy: a major cause of muscle weakness and paralysis. Lancet Neurol. 2011;10:931–41.

    Article  PubMed  Google Scholar 

  4. Griffiths RD, Jones C. Recovery from intensive care. BMJ. 1999;319:427–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Herridge MS, Cheung AM, Tansey CM, Matte-Martyn A, Diaz-Granados N, Al-Saidi F, Cooper AB, Guest CB, Mazer CD, Mehta S, Stewart TE, Barr A, Cook D, Slutsky AS, Canadian Critical Care Trials Group. One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med. 2003;348:683–93.

    Article  PubMed  Google Scholar 

  6. Zochodne DW, Bolton CF, Wells GA, Gilbert JJ, Hahn AF, Brown JD, Sibbald WA. Critical illness polyneuropathy. A complication of sepsis and multiple organ failure. Brain. 1987;110:819–41.

    Article  PubMed  Google Scholar 

  7. Fenzi F, Latronico N, Refatti N, Rizzuto N. Enhanced expression of E-selectin on the vascular endothelium of peripheral nerve in critically ill patients with neuromuscular disorders. Acta Neuropathol. 2003;106:75–82.

    CAS  PubMed  Google Scholar 

  8. Sasano J, Hino H, Uchida K, Tateda T, Kazama A, Tadokoro M. The changes of microcirculatory dynamics in peripheral nerves in acute septic rat model (in Japanese with English abstract). St. Marianna Med J. 2006;34:229–39.

    Google Scholar 

  9. Witt NJ, Zochodne DW, Bolton CF, Grand’Maison F, Wells G, Young GB, Sibbald WJ. Peripheral nerve function in sepsis and multiple organ failure. Chest. 1991;99:176–84.

    Article  CAS  PubMed  Google Scholar 

  10. Cankayali I, Dogan YH, Solak I, Demirag K, Eris O, Demirgoren S, Moral AR. Neuromuscular deterioration in the early stage of sepsis in rats. Crit Care. 2007;11:R1.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rich MM, Kraner SD, Barch RL. Altered gene expression in steroid-treated denervated muscle. Neuro Dis. 1999;6:515–22.

    Article  CAS  Google Scholar 

  12. Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, Rubenfeld G, Kahn JM, Shankar-Hari M, Singer M, Deutschman CS, Escobar GJ, Angus DC. Assessment of clinical criteria for sepsis: for the third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315:762–74.

    Article  CAS  PubMed  Google Scholar 

  13. Iba T, Yagi Y, Kidokoro A, Tsukata M, Kondo T, Maruyama T. Evaluation of a rat model for disseminated intravascular coagulation developed by infusion of lipopolysaccharide (in Japanese with English abstract). JJAAM. 1997;8:103–10.

    Google Scholar 

  14. Shibayama Y, Asaka S, Urano T, Araki M, Oda K. Role of neutrophils and platelets in the pathogenesis of focal hepatocellular necrosis in endotoxaemia. Exp Toxicol Pathol. 1995;47:35–9.

    Article  CAS  PubMed  Google Scholar 

  15. Zifko UA, Zipko HT, Bolton CF. Clinical and electrophysiological findings in critical illness polyneuropathy. J Neurol Sci. 1998;159:186–93.

    Article  CAS  PubMed  Google Scholar 

  16. Berek K, Margreiter J, Willeit J, Berek A, Schmutzhard E, Mutz NJ. Polyneuropathy in critically ill patients: a prospective evaluation. Intensive Care Med. 1996;22:849–55.

    Article  CAS  PubMed  Google Scholar 

  17. Ashley Z, Sutherland H, Lanmuller H, Unger E, Li F, Mayr W, Kern H, Jarvis JC, Salmons S. Determination of the chronaxie and rheobase of denervated limb muscles in conscious rabbits. Artif Organs. 2005;29:212–5.

    Article  PubMed  Google Scholar 

  18. Irnich W. The chronaxie time and its practical importance. Pacing Clin Electrophysiol. 1980;3:292–301.

    Article  CAS  PubMed  Google Scholar 

  19. Rich MM, Pinter MJ. Crucial role of sodium channel fast inactivation in muscle fibre inexcitability in a rat model of critical illness myopathy. J Physiol. 2003;547:555–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kraner SD, Novak KR, Wang Q, Peng J, Rich MM. Altered sodium channel-protein associations in critical illness myopathy. Skelet Muscle. 2012;30:17.

    Article  CAS  Google Scholar 

  21. Myers RR, Yamamoto T, Yaksh TL, Powell HC. The role of focal nerve ischemia and Wallerian degeneration in peripheral nerve injury producing hyperesthesia. Anesthesiology. 1993;78:308–16.

    Article  CAS  PubMed  Google Scholar 

  22. Novak KR, Nardelli P, Cope TC, Filatov G, Glass JD, Khan J, Rich MM. Inactivation of sodium channels underlies reversible neuropathy during critical illness in rats. J Clin Invest. 2009;119:1150–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang JS, Sladky JT, Kallen RG, Barchi RL. TTX-sensitive and TTX-insensitive sodium channel mRNA transcripts are independently regulated in adult skeletal muscle after denervation. Neuron. 1991;7:421–7.

    Article  CAS  PubMed  Google Scholar 

  24. Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, Spears L, Miller M, Franczyk M, Deprizio D, Schmidt GA, Bowman A, Barr R, McCallister KE, Hall JB, Kress JP. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet. 2009;373:1874–82.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Tatsuo Akema for his helpful suggestions for the nerve conduction studies, and Dr. Masatomo Doi, Prof. Masayuki Takagi, and Prof. Mamoru Tadokoro for suggestions for pathology diagnosis using histology and electron microscopy. This research was supported by JSPS KAKENHI Grant Number 20592130.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Hino.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miura, A., Hino, H., Uchida, K. et al. Peripheral nerve conduction abnormalities precede morphological alterations in an experimental rat model of sepsis. J Anesth 30, 961–969 (2016). https://doi.org/10.1007/s00540-016-2247-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-016-2247-5

Keywords

Navigation