Skip to main content

Advertisement

Log in

Trajectories of glycaemia following acute pancreatitis: a prospective longitudinal cohort study with 24 months follow-up

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

New-onset diabetes is the most common sequela of acute pancreatitis (AP). Yet, prospective changes in glycaemia over time have never been investigated comprehensively in this study population. The primary aim was to determine the cumulative incidence of new-onset prediabetes and new-onset diabetes after AP over 24 months of follow-up in a prospective cohort study. The secondary aim was to identify trajectories of glycaemia during follow-up and their predictors at the time of hospitalisation.

Methods

Patients with a prospective diagnosis of AP and no diabetes based on the American Diabetes Association criteria were followed up every 6 months up to 24 months after hospital discharge. Incidence of new-onset prediabetes/diabetes over each follow-up period was calculated. Group-based trajectory modelling was used to identify common changes in glycaemia. Multinomial regression analyses were conducted to investigate the associations between a wide array of routinely available demographic, anthropometric, laboratory, imaging, and clinical factors and membership in the trajectory groups.

Results

A total of 152 patients without diabetes were followed up. The cumulative incidence of new-onset prediabetes and diabetes was 20% at 6 months after hospitalisation and 43% over 24 months of follow-up (p trend < 0.001). Three discrete trajectories of glycaemia were identified: normal-stable glycaemia (32%), moderate-stable glycaemia (60%), and high-increasing glycaemia (8%). Waist circumference was a significant predictor of moderate-stable glycaemia. None of the studied predictors were significantly associated with high-increasing glycaemia.

Conclusions

This first prospective cohort study of changes in glycaemia (determined at structured time points in unselected AP patients) showed that at least one out of five patients develops new-onset prediabetes or diabetes at 6 months of follow-up and more than four out of ten—in the first 2 years. Changes in glycaemia after AP follow three discrete trajectories. This may inform prevention or early detection of critical changes in blood glucose metabolism following an attack of AP and, hence, reduce the burden of new-onset diabetes after acute pancreatitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Petrov MS, Yadav D. Global epidemiology and holistic prevention of pancreatitis. Nat Rev Gastroenterol Hepatol. 2019;16:175–84.

    PubMed  PubMed Central  Google Scholar 

  2. Petrov MS. Diabetes of the exocrine pancreas: American Diabetes Association-compliant lexicon. Pancreatology. 2017;17:523–6.

    PubMed  Google Scholar 

  3. Woodmansey C, McGovern AP, McCullough KA, et al. Incidence, demographics, and clinical characteristics of diabetes of the exocrine pancreas (type 3c): a retrospective cohort study. Diabetes Care. 2017;40:1486–93.

    PubMed  Google Scholar 

  4. Cho J, Scragg R, Petrov MS. Risk of mortality and hospitalization after post-pancreatitis diabetes mellitus vs type 2 diabetes mellitus: a population-based matched cohort study. Am J Gastroenterol. 2019;114:804–12.

    PubMed  Google Scholar 

  5. Cho J, Scragg R, Pandol SJ, et al. Antidiabetic medications and mortality risk in individuals with pancreatic cancer-related diabetes and post-pancreatitis diabetes: a nationwide cohort study. Diabetes Care. 2019;42:1675–83.

    CAS  PubMed  Google Scholar 

  6. Meier JJ, Breuer TGK, Bonadonna RC, et al. Pancreatic diabetes manifests when beta cell area declines by approximately 65% in humans. Diabetologia. 2012;55:1346–54.

    CAS  PubMed  Google Scholar 

  7. Tzovaras G, Parks RW, Diamond T, et al. Early and long-term results of surgery for severe necrotising pancreatitis. Dig Surg. 2004;21:41–6.

    PubMed  Google Scholar 

  8. Petrov MS, Windsor JA, Lévy P. New international classification of acute pancreatitis: more than just 4 categories of severity. Pancreas. 2013;42:389–91.

    PubMed  Google Scholar 

  9. Das SL, Singh PP, Phillips AR, et al. Newly diagnosed diabetes mellitus after acute pancreatitis: a systematic review and meta-analysis. Gut. 2014;63:818–31.

    PubMed  Google Scholar 

  10. Shen HN, Yang CC, Chang YH, et al. Risk of diabetes mellitus after first-attack acute pancreatitis: a national population-based study. Am J Gastroenterol. 2015;110:1698–706.

    PubMed  Google Scholar 

  11. Lee YK, Huang MY, Hsu CY, Su YC. Bidirectional relationship between diabetes and acute pancreatitis. Medicine (Baltimore). 2016;95:e2448.

    Google Scholar 

  12. Luo M, Tan KHX, Tan CS, et al. Longitudinal trends in HbA1c patterns and association with outcomes: a systematic review. Diabetes Metab Res Rev. 2018;34:e3015.

    PubMed  PubMed Central  Google Scholar 

  13. Luo M, Lim WY, Tan CS, et al. Longitudinal trends in HbA1c and associations with comorbidity and all-cause mortality in Asian patients with type 2 diabetes: a cohort study. Diabetes Res Clin Pract. 2017;133:69–77.

    CAS  PubMed  Google Scholar 

  14. Ravona-Springer R, Heymann A, Schmeidler J, et al. Trajectories in glycemic control over time are associated with cognitive performance in elderly subjects with type 2 diabetes. PLoS ONE. 2014;9:e97384.

    PubMed  PubMed Central  Google Scholar 

  15. Walraven I, Mast MR, Hoekstra T, et al. Distinct HbA1c trajectories in a type 2 diabetes cohort. Acta Diabetol. 2015;52:267–75.

    CAS  PubMed  Google Scholar 

  16. Chang HY, Wahlqvist ML, Liu WL, et al. Management trajectories in the type 2 diabetes integrated delivery system project in Taiwan: accounting for behavioral therapy, nutrition education and therapeutics. Asia Pac J Clin Nutr. 2014;23:592–606.

    PubMed  Google Scholar 

  17. Gebregziabher M, Egede LE, Lynch CP, et al. Effect of trajectories of glycemic control on mortality in type 2 diabetes: a semiparametric joint modeling approach. Am J Epidemiol. 2010;171:1090–8.

    PubMed  PubMed Central  Google Scholar 

  18. Maraví Poma E, Zubia Olascoaga F, Petrov MS, et al. SEMICYUC 2012. Recommendations for intensive care management of acute pancreatitis. Medicina Intensiva. 2013;37:163–79.

    PubMed  Google Scholar 

  19. Leppäniemi A, Tolonen M, Tarasconi A, et al. 2019 WSES guidelines for the management of severe acute pancreatitis. World J Emerg Surg. 2019;14:27.

    PubMed  PubMed Central  Google Scholar 

  20. Xiao AY, Tan MLY, Wu LM, et al. Global incidence and mortality of pancreatic diseases: a systematic review, meta-analysis, and meta-regression of population-based cohort studies. Lancet Gastroenterol Hepatol. 2016;1:45–55.

    PubMed  Google Scholar 

  21. Pendharkar SA, Asrani VM, Xiao AY, et al. Relationship between pancreatic hormones and glucose metabolism: a cross-sectional study in patients after acute pancreatitis. Am J Physiol Gastrointest Liver Physiol. 2016;311:G50–G5858.

    PubMed  Google Scholar 

  22. Wu D, Xu Y, Zeng Y, et al. Endocrine pancreatic function changes after acute pancreatitis. Pancreas. 2011;40:1006–111.

    CAS  PubMed  Google Scholar 

  23. Tu J, Zhang J, Ke L, et al. Endocrine and exocrine pancreatic insufficiency after acute pancreatitis: long-term follow-up study. BMC Gastroenterol. 2017;17:114.

    PubMed  PubMed Central  Google Scholar 

  24. Ma JH, Yuan YJ, Lin SH, et al. Nomogram for predicting diabetes mellitus after the first attack of acute pancreatitis. Eur J Gastroenterol Hepatol. 2019;31:323–8.

    PubMed  Google Scholar 

  25. Ito T, Ishiguro H, Ohara H, et al. Evidence-based clinical practice guidelines for chronic pancreatitis 2015. J Gastroenterol. 2016;51:85–92.

    CAS  PubMed  Google Scholar 

  26. American Diabetes Association. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2019. Diabetes Care. 2019;42:S13–28.

    Google Scholar 

  27. Bharmal SH, Pendharkar S, Singh RG, et al. Glucose counter-regulation after acute pancreatitis. Pancreas. 2019;48:670–81.

    CAS  PubMed  Google Scholar 

  28. Jivanji CJ, Asrani VM, Windsor JA, Petrov MS. New-onset diabetes after acute and critical illness: a systematic review. Mayo Clin Proc. 2017;92:762–73.

    PubMed  Google Scholar 

  29. Levy JC, Matthews DR, Hermans MP. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care. 1998;21:2191–2.

    CAS  PubMed  Google Scholar 

  30. Quan H, Li B, Couris CM, et al. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am J Epidemiol. 2011;173:676–82.

    PubMed  Google Scholar 

  31. Amrhein V, Greenland S, McShane B. Scientists rise up against statistical significance. Nature. 2019;567:305–7.

    CAS  PubMed  Google Scholar 

  32. Jones BL, Nagin DS, Roeder K. A SAS procedure based on mixture models for estimating developmental trajectories. Sociol Methods Res. 2001;29:374–93.

    Google Scholar 

  33. Albaum JM, Carsley S, Chen Y, et al. Persistent high non-high-density lipoprotein cholesterol in early childhood: a latent class growth model analysis. J Pediatr. 2017;191:152–7.

    CAS  PubMed  Google Scholar 

  34. Andruff H, Carraro N, Thompson A, et al. Latent class growth modelling: a tutorial. Tutor Quant Methods Psychol. 2009;5:11–24.

    Google Scholar 

  35. Nagin DS, Odgers CL. Group-based trajectory modeling in clinical research. Ann Rev Clin Psychol. 2010;6:109–38.

    Google Scholar 

  36. Carson AP, Fox CS, McGuire DK, et al. Low hemoglobin A1c and risk of all-cause mortality among us adults without diabetes. Circ Cardiovasc Qual Outcomes. 2010;3:661–7.

    PubMed  PubMed Central  Google Scholar 

  37. Bharmal SH, Cho J, Stuart CE, et al. Oxyntomodulin may distinguish new-onset diabetes after acute pancreatitis from type 2 diabetes. Clin Transl Gastroenterol. 2020;11:e00132.

    PubMed  PubMed Central  Google Scholar 

  38. Pendharkar SA, Singh RG, Bharmal SH, et al. Pancreatic hormone responses to mixed meal test in new-onset prediabetes/diabetes after non-necrotizing acute pancreatitis. J Clin Gastroenterol. 2020;54:e11–e20.

    CAS  PubMed  Google Scholar 

  39. Cho J, Scragg R, Petrov MS. Use of insulin and the risk of progression of pancreatitis: a population-based cohort study. Clin Pharmacol Ther. 2020;107:580–7.

    CAS  PubMed  Google Scholar 

  40. Laiteerapong N, Karter AJ, Moffet HH, et al. Ten-year hemoglobin A1c trajectories and outcomes in type 2 diabetes mellitus: the Diabetes & Aging Study. J Diabetes Complicat. 2017;31:94–100.

    PubMed  Google Scholar 

  41. Rigalleau V, Benoit J, Charret L, et al. Longitudinal trends in HbA1c in diabetes: Stable means can hide meaningful long-term changes. Diabetes Metab Res Rev. 2018;34:e3065.

    PubMed  Google Scholar 

  42. Donnelly LA, Zhou K, Doney ASF, et al. Rates of glycaemic deterioration in a real-world population with type 2 diabetes. Diabetologia. 2018;61:607–15.

    CAS  PubMed  Google Scholar 

  43. Soo DH, Pendharkar SA, Jivanji CJ, et al. Derivation and validation of the prediabetes self-assessment screening score after acute pancreatitis (PERSEUS). Dig Liver Dis. 2017;49:1146–54.

    PubMed  Google Scholar 

  44. Singh RG, Cervantes A, Kim JU, et al. Intrapancreatic fat deposition and visceral fat volume are associated with the presence of diabetes after acute pancreatitis. Am J Physiol Gastrointest Liver Physiol. 2019;316:G806–G815815.

    CAS  PubMed  Google Scholar 

  45. Singh RG, Pendharkar SA, Gillies NA, et al. Associations between circulating levels of adipocytokines and abdominal adiposity in patients after acute pancreatitis. Clin Exp Med. 2017;17:477–87.

    CAS  PubMed  Google Scholar 

  46. Singh RG, Pendharkar SA, Plank LD, et al. Role of human lipocalin proteins in abdominal obesity after acute pancreatitis. Peptides. 2017;91:1–7.

    CAS  PubMed  Google Scholar 

  47. Singh RG, Pendharkar SA, Cervantes A, et al. Abdominal obesity and insulin resistance after an episode of acute pancreatitis. Dig Liver Dis. 2018;50:1081–7.

    CAS  PubMed  Google Scholar 

  48. Xiao AY, Tan ML, Plana M, et al. The use of International Classification of Disease codes to identify patients with pancreatitis: a systematic review and meta-analysis of diagnostic accuracy studies. Clin Transl Gastroenterol. 2018;9:191.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Greci LS, Kailasam M, Malkani S, et al. Utility of HbA(1c) levels for diabetes case finding in hospitalized patients with hyperglycemia. Diabetes Care. 2003;26:1064–8.

    PubMed  Google Scholar 

  50. Petrov MS. Metabolic trifecta after pancreatitis: exocrine pancreatic dysfunction, altered gut microbiota, and new-onset diabetes. Clin Transl Gastroenterol. 2019;10:e00086.

    PubMed  PubMed Central  Google Scholar 

  51. Das SL, Kennedy JI, Murphy R, et al. Relationship between the exocrine and endocrine pancreas after acute pancreatitis. World J Gastroenterol. 2014;20:17196–205.

    PubMed  PubMed Central  Google Scholar 

  52. Ko J, Cho J, Petrov MS. Low serum amylase, lipase, and trypsin as biomarkers of metabolic disorders: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2020;159:107974.

    CAS  PubMed  Google Scholar 

  53. Evert AB, Boucher JL, Cypress M, et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care. 2014;37(Suppl 1):S120–S143143.

    PubMed  Google Scholar 

  54. Goodarzi MO, Nagpal T, Greer P, et al. Genetic risk score in diabetes associated with chronic pancreatitis versus type 2 diabetes mellitus. Clin Transl Gastroenterol. 2019;10:e00057.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was part of the COSMOS program. COSMOS is supported, in part, by the Health Research Council of New Zealand (grant 15/035 to Associate Professor Max Petrov), which played no role in the study design; collection, analysis, or interpretation of data, or writing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Sergey Petrov.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharmal, S.H., Cho, J., Alarcon Ramos, G.C. et al. Trajectories of glycaemia following acute pancreatitis: a prospective longitudinal cohort study with 24 months follow-up. J Gastroenterol 55, 775–788 (2020). https://doi.org/10.1007/s00535-020-01682-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-020-01682-y

Keywords

Navigation