Skip to main content

Advertisement

Log in

Diagnostic accuracy of combined biomarker measurements and vibration-controlled transient elastography (VCTE) for predicting fibrosis stage of non-alcoholic fatty liver disease

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Numerous biomarkers have been developed for assessing the presence and severity of liver fibrosis associated with non-alcoholic fatty liver disease (NAFLD). Fibrosis can be assessed by liver stiffness measurement (LSM) using vibration-controlled transient elastography (VCTE). Here we examined whether diagnostic accuracy and applicability can be further improved by combining various biomarker measurements with LSM.

Methods

A total of 278 patients with biopsy-confirmed Japanese NAFLD patients were enrolled. Area under the receiver operator characteristic curve (AUROC) was evaluated for obtaining the optimum interpretation criteria for LSM by VCTE and comparing various biomarkers alone and in combination with LSM.

Results

Liver stiffness measurements including cases with interquartile range (IQR)/median (M) < 30% or LSM ≤ 7.1 kPa demonstrated high applicability (90% of patients with NAFLD) and accuracy (AUROC: 0.891) for predicting stage ≥ 3 fibrosis. For all biomarkers tested, the AUROC values for predicting stage ≥ 3 fibrosis were increased when combined with LSM [platelet count, 0.734 vs. 0.912; type-4 collagen 7s (T4C7s), 0.894 vs. 0.921; aspartate aminotransferase to alanine aminotransferase ratio (AST/ALT), 0.774 vs. 0.906; AST to platelet ratio index, 0.789 vs. 0.902; FIB-4 index, 0.828 vs. 0.922; NAFLD fibrosis score, 0.800 vs. 0.906; CA index-fibrosis, 0.884 vs. 0.913; FM-fibro index, 0.920 vs. 0.943; FIB-4 index + T4C7s, 0.901 vs. 0.930], demonstrating the advantage of concurrent LSM.

Conclusions

While VCTE has slightly limited applicability (90%) for patients with NAFLD, concurrent measurement with certain biomarkers (especially FM-fibro, T4C7s, and FIB-4) greatly improves the diagnostic accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AUROC:

The area under the receiver operator characteristic curve

cfNRI:

Category-free net reclassification improvement

IDI:

Integrated discrimination improvement

IQR/M:

Interquartile range/median

LSM:

Liver stiffness measurement

NAFLD:

Non-alcoholic fatty liver disease

NFS:

NAFLD fibrosis score

NPV:

Negative predictive value

PLT:

Platelet count

PPV:

Positive predictive value

T4C7s:

Type-4 collagen 7s

VCTE:

Vibration-controlled transient elastography

References

  1. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the study of liver diseases. Hepatology. 2018;67:328–57.

    Article  PubMed  Google Scholar 

  2. Angulo P, Kleiner DE, Dam-Larsen S, et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology. 2015;149(389–97):e10.

    Google Scholar 

  3. Kim D, Kim WR, Kim HJ, et al. Association between noninvasive fibrosis markers and mortality among adults with nonalcoholic fatty liver disease in the United States. Hepatology. 2013;57:1357–65.

    Article  CAS  PubMed  Google Scholar 

  4. Dulai PS, Singh S, Patel J, et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: systematic review and meta-analysis. Hepatology. 2017;65:1557–65.

    Article  CAS  PubMed  Google Scholar 

  5. Yoshimura K, Okanoue T, Ebise H, et al. Identification of novel noninvasive markers for diagnosing nonalcoholic steatohepatitis and related fibrosis by data mining. Hepatology. 2016;63:462–73.

    Article  CAS  PubMed  Google Scholar 

  6. Okanoue T, Ebise H, Kai T, et al. A simple scoring system using type IV collagen 7s and aspartate aminotransferase for diagnosing nonalcoholic steatohepatitis and related fibrosis. J Gastroenterol. 2018;53:129–39.

    Article  CAS  PubMed  Google Scholar 

  7. Kwok R, Tse YK, Wong GL, et al. Systematic review with meta-analysis: non-invasive assessment of non-alcoholic fatty liver disease—the role of transient elastography and plasma cytokeratin-18 fragments. Aliment Pharmacol Ther. 2014;39:254–69.

    Article  CAS  PubMed  Google Scholar 

  8. Yoneda M, Imajo K, Takahashi H, et al. Clinical strategy of diagnosing and following patients with nonalcoholic fatty liver disease based on invasive and noninvasive methods. J Gastroenterol. 2018;53:181–96.

    Article  CAS  PubMed  Google Scholar 

  9. Younossi ZM, Loomba R, Anstee QM, et al. Diagnostic modalities for nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and associated fibrosis. Hepatology. 2018;68:349–60.

    Article  PubMed  Google Scholar 

  10. Vilar-Gomez E, Chalasani N. Non-invasive assessment of non-alcoholic fatty liver disease: clinical prediction rules and blood-based biomarkers. J Hepatol. 2018;68:305–15.

    Article  CAS  PubMed  Google Scholar 

  11. Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–21.

    Article  PubMed  Google Scholar 

  12. Matteoni CA, Younossi ZM, Gramlich T, et al. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology. 1999;116:1413–9.

    Article  CAS  PubMed  Google Scholar 

  13. Kruger FC, Daniels CR, Kidd M, et al. Apri: a simple bedside marker for advanced fibrosis that can avoid liver biopsy in patients with Nafld/Nash. S Afr Med J. 2011;101:477–80.

    CAS  PubMed  Google Scholar 

  14. Shah AG, Lydecker A, Murray K, et al. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2009;7:1104–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Angulo P, Hui JM, Marchesini G, et al. The Nafld fibrosis score: a noninvasive system that identifies liver fibrosis in patients with Nafld. Hepatology. 2007;45:846–54.

    Article  CAS  PubMed  Google Scholar 

  16. Kanda Y. Investigation of the freely available easy-to-use software ‘Ezr’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8.

    Article  CAS  PubMed  Google Scholar 

  17. Kanda Y. Free Statistical Software: Ezr (Easy R) on R Commander.

  18. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (Roc) curve. Radiology. 1982;143:29–36.

    Article  CAS  PubMed  Google Scholar 

  19. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.

    Article  CAS  PubMed  Google Scholar 

  20. Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, et al. Evaluating the added predictive ability of a new marker: from area under the roc curve to reclassification and beyond. Stat Med. 2008;27:157–72 (discussion 207–212).

    Article  PubMed  Google Scholar 

  21. Pencina MJ, D’Agostino RB Sr, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med. 2011;30:11–21.

    Article  PubMed  Google Scholar 

  22. Boursier J, Zarski JP, de Ledinghen V, et al. Determination of reliability criteria for liver stiffness evaluation by transient elastography. Hepatology. 2013;57:1182–91.

    Article  PubMed  Google Scholar 

  23. Dietrich CF, Bamber J, Berzigotti A, et al. Efsumb guidelines and recommendations on the clinical use of liver ultrasound elastography, update 2017 (long version). Ultraschall Med. 2017;38:e16–47.

    PubMed  Google Scholar 

  24. Singh S, Muir AJ, Dieterich DT, et al. American gastroenterological association institute technical review on the role of elastography in chronic liver diseases. Gastroenterology. 2017;152:1544–77.

    Article  PubMed  Google Scholar 

  25. Castera L, Foucher J, Bernard PH, et al. Pitfalls of liver stiffness measurement: a 5-year prospective study of 13,369 examinations. Hepatology. 2010;51:828–35.

    PubMed  Google Scholar 

  26. European Association for Study of L, Asociacion Latinoamericana para el Estudio del H. Easl-Aleh clinical practice guidelines: non-invasive tests for evaluation of liver disease severity and prognosis. J Hepatol. 2015;63:237–64.

    Article  Google Scholar 

  27. Sandrin L, Fourquet B, Hasquenoph JM, et al. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol. 2003;29:1705–13.

    Article  PubMed  Google Scholar 

  28. Arena U, Vizzutti F, Corti G, et al. Acute viral hepatitis increases liver stiffness values measured by transient elastography. Hepatology. 2008;47:380–4.

    Article  CAS  PubMed  Google Scholar 

  29. Millonig G, Reimann FM, Friedrich S, et al. Extrahepatic cholestasis increases liver stiffness (Fibroscan) irrespective of fibrosis. Hepatology. 2008;48:1718–23.

    Article  PubMed  Google Scholar 

  30. Xiao G, Zhu S, Xiao X, et al. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: a meta-analysis. Hepatology. 2017;66:1486–501.

    Article  CAS  PubMed  Google Scholar 

  31. Yoshioka K, Hashimoto S, Kawabe N. Measurement of liver stiffness as a non-invasive method for diagnosis of non-alcoholic fatty liver disease. Hepatol Res. 2015;45:142–51.

    Article  PubMed  Google Scholar 

  32. Guha IN, Parkes J, Roderick P, et al. Noninvasive markers of fibrosis in nonalcoholic fatty liver disease: validating the European liver fibrosis panel and exploring simple markers. Hepatology. 2008;47:455–60.

    Article  PubMed  Google Scholar 

  33. Rosenberg WM, Voelker M, Thiel R, et al. Serum markers detect the presence of liver fibrosis: a cohort study. Gastroenterology. 2004;127:1704–13.

    Article  PubMed  Google Scholar 

  34. Chen J, Yin M, Talwalkar JA, et al. Diagnostic performance of Mr elastography and vibration-controlled transient elastography in the detection of hepatic fibrosis in patients with severe to morbid obesity. Radiology. 2017;283:418–28.

    Article  PubMed  Google Scholar 

  35. Hsu C, Caussy C, Imajo K, et al. Magnetic resonance vs transient elastography analysis of patients with nonalcoholic fatty liver disease: a systematic review and pooled analysis of individual participants. Clin Gastroenterol Hepatol. 2018.

  36. Cui J, Heba E, Hernandez C, et al. Magnetic resonance elastography is superior to acoustic radiation force impulse for the diagnosis of fibrosis in patients with biopsy-proven nonalcoholic fatty liver disease: a prospective study. Hepatology. 2016;63:453–61.

    Article  PubMed  Google Scholar 

  37. Imajo K, Kessoku T, Honda Y, et al. Magnetic resonance imaging more accurately classifies steatosis and fibrosis in patients with nonalcoholic fatty liver disease than transient elastography. Gastroenterology. 2016;150(626–37):e7.

    Google Scholar 

  38. Park CC, Nguyen P, Hernandez C, et al. Magnetic resonance elastography vs transient elastography in detection of fibrosis and noninvasive measurement of steatosis in patients with biopsy-proven nonalcoholic fatty liver disease. Gastroenterology. 2017;152(598–607):e2.

    Google Scholar 

  39. Petta S, Vanni E, Bugianesi E, et al. The combination of liver stiffness measurement and Nafld fibrosis score improves the noninvasive diagnostic accuracy for severe liver fibrosis in patients with nonalcoholic fatty liver disease. Liver Int. 2015;35:1566–73.

    Article  PubMed  Google Scholar 

  40. Boursier J, Vergniol J, Sawadogo A, et al. The combination of a blood test and fibroscan improves the non-invasive diagnosis of liver fibrosis. Liver Int. 2009;29:1507–15.

    Article  PubMed  Google Scholar 

  41. Ducancelle A, Leroy V, Vergniol J, et al. A single test combining blood markers and elastography is more accurate than other fibrosis tests in the main causes of chronic liver diseases. J Clin Gastroenterol. 2017;51:639–49.

    Article  CAS  PubMed  Google Scholar 

  42. Heo JY, Kim BK, Park JY, et al. Combination of transient elastography and an enhanced liver fibrosis test to assess the degree of liver fibrosis in patients with chronic hepatitis B. Gut Liver. 2018;12:190–200.

    Article  PubMed  Google Scholar 

  43. Boursier J, de Ledinghen V, Zarski JP, et al. A new combination of blood test and fibroscan for accurate non-invasive diagnosis of liver fibrosis stages in chronic hepatitis C. Am J Gastroenterol. 2011;106:1255–63.

    Article  PubMed  Google Scholar 

  44. Cales P, Boursier J, Ducancelle A, et al. Improved fibrosis staging by elastometry and blood test in chronic hepatitis C. Liver Int. 2014;34:907–17.

    Article  PubMed  Google Scholar 

  45. Voican CS, Louvet A, Trabut JB, et al. Transient elastography alone and in combination with Fibrotest((R)) for the diagnosis of hepatic fibrosis in alcoholic liver disease. Liver Int. 2017;37:1697–705.

    Article  CAS  PubMed  Google Scholar 

  46. Dincses E, Yilmaz Y. Diagnostic usefulness of fibrometer Vcte for hepatic fibrosis in patients with nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 2015;27:1149–53.

    Article  CAS  PubMed  Google Scholar 

  47. Loong TC, Wei JL, Leung JC, et al. Application of the combined fibrometer vibration-controlled transient elastography algorithm in chinese patients with non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2017;32:1363–9.

    Article  CAS  PubMed  Google Scholar 

  48. Myers RP, Pomier-Layrargues G, Kirsch R, et al. Feasibility and diagnostic performance of the Fibroscan Xl probe for liver stiffness measurement in overweight and obese patients. Hepatology. 2012;55:199–208.

    Article  PubMed  Google Scholar 

  49. de Ledinghen V, Wong VW, Vergniol J, et al. Diagnosis of liver fibrosis and cirrhosis using liver stiffness measurement: comparison between M and Xl probe of Fibroscan(R). J Hepatol. 2012;56:833–9.

    Article  PubMed  Google Scholar 

  50. Vuppalanchi R, Siddiqui MS, Van Natta ML, et al. Performance characteristics of vibration-controlled transient elastography for evaluation of nonalcoholic fatty liver disease. Hepatology. 2018;67:134–44.

    Article  PubMed  Google Scholar 

Download references

Funding

This research is supported by AMED under Grant Number JP19fk0210040 (T.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Okanoue.

Ethics declarations

Conflict of interest

T. Shima has received research funding from Bristol-Myers Squibb. All authors have no conflicts of interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shima, T., Sakai, K., Oya, H. et al. Diagnostic accuracy of combined biomarker measurements and vibration-controlled transient elastography (VCTE) for predicting fibrosis stage of non-alcoholic fatty liver disease. J Gastroenterol 55, 100–112 (2020). https://doi.org/10.1007/s00535-019-01626-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-019-01626-1

Keywords

Navigation