Skip to main content

Advertisement

Log in

Aeolian and fluvial processes influence on dust storms of Hormuz Strait and Makran coastal plains (SE Iran); insight from geomorphic landforms, and sediment texture and mineralogy

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Hormuz Strait and Makran coastal plains in southeast Iran are significant sources of dust storms in south Asia due to an arid climate with a strong wind regime, low topography, poor vegetation cover, and large watersheds with available loose fine-grained sediments. However, their sedimentology, mineralogy, and geomorphic landforms are poorly studied. Granulometry and mineralogy analyses are performed on 46 samples of the coastal plains to explore the influence of aeolian and fluvial processes on the surface sediment properties of the coastal plains. The geomorphic landforms are mapped based on field observations, geological-geomorphological maps, and satellite images. The results show that the main sources of fine-grained dust are distal alluvial fans and flood plains, supratidal plains, and badlands. Calcite, quartz, and feldspar are major, and dolomite and halite are minor minerals. Calcite displays a positive relationship with grain size and eastward subtractive distribution pattern, while quartz exhibits a negative correlation with grain size and eastward additive distribution pattern. Feldspar shows almost a scatter distribution. The monotonous distribution pattern of chlorite, illite, and kaolinite as the main clay minerals is controlled by fluvial and alluvial processes. Aeolian processes influenced the eastward subtractive distribution of montmorillonite and palygorskite as minor clay minerals. The surface sediment texture and mineralogy of the Hormuz Strait coast are strongly affected by northwesterly wind and dust storms. Aeolian processes are dominated on the western Makran coast with large terrestrial and coastal sand dunes, while fluvial and alluvial processes are dominant on the eastern Makran coast with large distal alluvial fans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmady-Birgani H, Mirnejad H, Feiznia S, McQueen KG (2015) Mineralogy and geochemistry of atmospheric particulates in western Iran. Atmos Environ. 119:262–272

    Article  Google Scholar 

  • Akbarian M, Khoorani A (2022) The impacts of climate variability on the wind erosion potentials: western region of Makran coastal plain, South of Iran. . Theor Appl Climatol 149(3–4):1209–1221

    Article  Google Scholar 

  • Al-Bakri D, Khalaf F, Al-Ghadban A (1984) Mineralogy, genesis, and sources of surficial sediments in the Kuwait marine environment, northern Arabian Gulf. J Sediment Res 54(4):1266–1279

    Google Scholar 

  • Alizadeh-Choobari O, Zawar-Reza P, Sturman A (2013) Low level jet intensification by mineral dust aerosols. Ann Geophys 31(4):625–632

    Article  Google Scholar 

  • Alizadeh-Choobari O, Ghafarian P, Owlad E (2016) Temporal variations in the frequency and concentration of dust events over Iran based on surface observations. Int J Climatol 36(4):2050–2062

    Article  Google Scholar 

  • Al-Juboury AI (2009) Palygorskite in Miocene rocks of northern Iraq: environmental and geochemical indicators. Acta Geol Pol 59:269–282

    Google Scholar 

  • Al-Najjar MA, Munday C, Fink A, Abdel-Moati MA, Hamza W, Korte L, Stuut JB, Al-Ansari IS, Al-Maslamani I, de Beer D (2020) Nutritive effect of dust on microbial biodiversity and productivity of the Arabian Gulf. Aquat Ecosyst Health Manag 23(2):122–135

    Article  Google Scholar 

  • Al-Shehhi MR, Gherboudj I, Ghedira H (2012) A study on the effect of dust and wind on phytoplankton activities in the Arabian Gulf. IEEE International Symposium on Geoscience and Remote Sensing (IGARSS). pp 2571-2574

  • Amin P, Akhavan Ghalibaf M (2022) Neoformation of palygorskite in Calcids of Central Iran. Can J Soil Sci 102(2):253–262

    Article  Google Scholar 

  • Aqrawi AAM (1993) Palygorskite in the recent fluviolacustrine and deltaic sediments of southern Mesopotamia. Clay Miner 28:153–159

    Article  Google Scholar 

  • Attiya AA, Jones BG (2020) Assessment of mineralogical and chemical properties of airborne dust in Iraq. SN Appl Sci 2(9):614

    Article  Google Scholar 

  • Boroughani M, Pourhashemi S, Gholami H, Kaskaoutis DG (2021) Predicting of dust storm source by combining remote sensing, statistic-based predictive models and game theory in the Sistan watershed, southwestern Asia. J. Arid Land. 13(11):1103–1121

    Article  Google Scholar 

  • Burg JP (2018) Geology of the onshore Makran accretionary wedge: synthesis and tectonic interpretation. Earth Sci Rev 185:1210–1231

    Article  Google Scholar 

  • Burg JP, Bernoulli D, Smit J, Dolati A, Bahroudi A (2008) A giant catastrophic mud-and-debris flow in the Miocene Makran. Terra Nova 20(3):188–193

    Article  Google Scholar 

  • Caquineau S, Gaudichet A, Gomes L, Magonthier MC, Chatenet B (1998) Saharan dust: clay ratio as a relevant tracer to assess the origin of soil-derived aerosols. Geophys Res Lett 25(7):983–986

    Article  Google Scholar 

  • Chester R, Sharples EJJ, Sanders GS (1985) The concentration of particulate aluminum and clay minerals in aerosols from the northern Arabian Sea. J Sediment Res 5(1):37–41

    Article  Google Scholar 

  • Cullen HM, Demenocal PB, Hemming S, Hemming G, Brown FH, Guilderson T, Sirocko F (2000) Climate change and the collapse of the Akkadian empire: evidence from the deep sea. Geology 28(4):379–382

    Article  Google Scholar 

  • Das SS, Maurya AS, Pandey AC, Bhan U, Rai AK (2008) Influence of sediment source and monsoonal variations on the late quaternary clay mineral assemblages at ODP site 728A, northwestern Arabian Sea. Current Science 95(9):1320–1326

    Google Scholar 

  • Dolati A (2010) Stratigraphy, structural geology and low-temperature thermochronology across the Makran accretionary wedge in Iran. Dissertation, Zürich, Switzerland, Eidgenössische Technische Hochschule (ETH) Zürich, no. 19151. p. 306

  • Ellouz-Zimmermann N, Lallemant S, Castilla R, Mouchot N, Leturmy P, Battani A, Buret C, Cherel L, Desaubliaux G, Deville E (2007) Offshore frontal part of the Makran Accretionary prism: the Chamak survey (Pakistan), Thrust belts and foreland basins. Springer, Cham. p 351-366

  • Ershadifar H, Saleh A, Kor K, Ghazilou A, Baskaleh G, Hamzei S (2023) Nutrients and chlorophyll-a in the Gulf of Oman: high seasonal variability in nitrate distribution. Deep Sea Res Part II Top Stud Oceanogr 208:105250

    Article  Google Scholar 

  • Farahat A, Abuelgasim A (2019) Role of atmospheric nutrient pollution in stimulating phytoplankton growth in small area and shallow depth water bodies: Arabian Gulf and the sea of Oman. Atmos Environ 219:117045

    Article  Google Scholar 

  • Farhoudi G, Karig DE (1977) Makran of Iran and Pakistan as an active arc system. Geology 5(11):664–668

    Article  Google Scholar 

  • Folk RL (1954) The distinction between grain size and mineral composition in sedimentary-rock nomenclature. J Geol 62(4):344–359

    Article  Google Scholar 

  • Fritz HM, Blount CD, Albusaidi FB, Al-Harthy AHM (2010) Cyclone Gonu storm surge in Oman. Estuar Coast Shelf Sci 86(1):102–106

    Article  Google Scholar 

  • Ganor E (1991) The composition of clay minerals transported to Israel as indicators of Saharan dust emission. Atmos Environ 25(12):2657–2664

    Article  Google Scholar 

  • Ghaemi M, Abtahi B, Gholamipour S (2021) Spatial distribution of nutrients and chlorophyll a across the Persian Gulf and the Gulf of Oman. Ocean Coast Manag 201:105476

    Article  Google Scholar 

  • Gholami H, Mohammadifar A (2022) Novel deep learning hybrid models (CNN-GRU and DLDL-RF) for the susceptibility classification of dust sources in the Middle East: a global source. Sci. Rep. 12(1):19342

    Article  Google Scholar 

  • Gholami H, Jafari TakhtiNajad E, Collins AL, Fathabadi A (2019) Monte Carlo fingerprinting of the terrestrial sources of different particle size fractions of coastal sediment deposits using geochemical tracers: some lessons for the user community. Environ Sci Pollut Res 26:13560–13579

    Article  Google Scholar 

  • Gholami H, Mohammadifar A, Bui DT, Collins AL (2020) Mapping wind erosion hazard with regression-based machine learning algorithms. Sci. Rep. 10(1):20494

    Article  Google Scholar 

  • Gholami H, Mohammadifar A, Pourghasemi HR, Collins AL (2020) A new integrated data mining model to map spatial variation in the susceptibility of land to act as a source of aeolian dust. Environ Sci Pollut Res 27:42022–42039

    Article  Google Scholar 

  • Gholami H, Mohamadifar A, Sorooshian A, Jansen JD (2020) Machine-learning algorithms for predicting land susceptibility to dust emissions: the case of the Jazmurian Basin. Iran. Atmos Pollut Res 11(8):1303–1315

    Article  Google Scholar 

  • Gholami H, Mohammadifar A, Golzari S, Kaskaoutis DG, Collins AL (2021) Using the Boruta algorithm and deep learning models for mapping land susceptibility to atmospheric dust emissions in Iran. Aeolian Res. 50:100682

    Article  Google Scholar 

  • Gholami H, Mohammadifar A, Malakooti H, Esmaeilpour Y, Golzari S, Mohammadi F, Li Y, Song Y, Kaskaoutis DG, Fitzsimmons KE, Collins AL (2021) Integrated modelling for mapping spatial sources of dust in central Asia-an important dust source in the global atmospheric system. Atmos. Pollut. Res. 12(9):101173

    Article  Google Scholar 

  • Gingele FX, De Deckker P, Hillenbrand CD (2001) Clay mineral distribution in surface sediments between Indonesia and NW Australia—source and transport by ocean currents. Mar Geol 179(3–4):135–146

    Article  Google Scholar 

  • Ginoux P, Prospero JM, Gill TE, Hsu NC, Zhao M (2012) Global-scale attribution of anthropogenic and natural dust sources and their emis-sion rates based on MODIS Deep Blue aerosol products. Rev Geophys. 50(3):3005

    Article  Google Scholar 

  • Goudie AS, Middleton NJ (2000) Dust storms in south west Asia. Acta Universitatis Carolinae, XXXV, Supplementum. p 73-83

  • Grando G, McClay K (2007) Morphotectonics domains and structural styles in the Makran accretionary prism, offshore Iran. Sediment Geol 196(1–4):157–179

    Article  Google Scholar 

  • Guieu C, Al Azhar M, Aumont O, Mahowald N, Levy M, Éthé C, Lachkar Z (2019) Major impact of dust deposition on the productivity of the Arabian Sea. Geophys Res Lett 46(12):6736–6744

    Article  Google Scholar 

  • Haghipour N, Burg JP (2014) Geomorphological analysis of the drainage system on the growing Makran accretionary wedge. Geomorphology 209:111–132

    Article  Google Scholar 

  • Hamza W (2021) Dust storms and its benefits to the marine life of the Arabian Gulf. The Arabian Seas: biodiversity, environmental challenges and conservation measures. 141-160.

  • Harris W, Norman WG (2008) X-ray diffraction techniques for soil mineral identification. SSSA Book Series, Methods of soil analysis part 5-Mineralogical methods, vol 5, pp 81-115

  • He W, Liu J, Huang Y, Cao L (2020) Sea level change controlled the sedimentary processes at the Makran continental margin over the past 13,000 yr. J Geophys Res Oceans. 125(3):e2019JC015703

    Article  Google Scholar 

  • Hojati S, Khademi H, Af C (2010) Palygorskite formation under the influence of groundwater in central Iranian soils. Anadolu Tarım Bilimleri Dergisi 25(1):34–41

    Google Scholar 

  • Hojati S, Khademi H, Cano AF, Landi A (2012) Characteristics of dust deposited along a transect between central Iran and the Zagros Mountains. Catena 88(1):27–36

    Article  Google Scholar 

  • Hosseini SAR, Gholami H, Esmaeilpoor Y (2019) Assessment of land use and land cover change detection by using remote sensing and gis techniques in the coastal deserts, South of Iran. GeoSpatial Conference 2019. Int Arch Photogramm Remote Sens Spatial Inf Sci 42:489–492

    Article  Google Scholar 

  • Jeong GY (2008) Bulk and single-particle mineralogy of Asian dust and a comparison with its source soils. J Geophys Res Atmos 113:D02208

    Article  Google Scholar 

  • Jolivet M, Barrier L, Dominguez S, Gueri L, Heilbronn G, Fu B (2014) Unbalanced sediment budgets in the catchment–alluvial fan system of the Kuitun River (northern Tian Shan, China): Implications for mass-balance estimates, denudation and sedimentation rates in orogenic systems. Geomorphology 214:168–182

    Article  Google Scholar 

  • Kaveh-Firouz A, Mohammadi A, Görüm T, Sarıkaya MA, Alizadeh H, Akbaş A, Mirarabi A (2023) Main drivers of drainage pattern development in onshore Makran accretionary wedge, SE Iran. Int J Earth Sci 112:539–559

    Article  Google Scholar 

  • Kaveh-Firouz A, Mohammadi A, Lak R (2020) Makran coastal plain deposits (SE Iran), a potential source of aeolian sediments; insights from sedimentology and geochemistry. In 2nd International Conference on Oceanography for West Asia. pp 98-101

  • Khademi H, Mermut AR (1998) Source of palygorskite in gypsiferous Aridisols and associated sediments from central Iran. Clay miner 33(4):561–578

    Article  Google Scholar 

  • Kirkham A (1997) Shoreline evolution, aeolian deflation and anhydrite distribution of the Holocene. Abu Dhabi. GeoArabia 2(4):403–416

    Article  Google Scholar 

  • Kolla V, Kostecki JA, Robinson F, Biscaye PE, Ray PK (1981) Distributions and origins of clay minerals and quartz in surface sediments of the Arabian Sea. J Sediment Res 51(2):563–569

    Google Scholar 

  • Kolla V, Ray PK, Kostecki JA (1981) Surficial sediments of the Arabian Sea. Mar Geol 41(3–4):183–204

    Article  Google Scholar 

  • McCall GJH (1997) The geotectonic history of the Makran and adjacent areas of southern Iran. J Asian Earth Sci 15(6):517–531

    Article  Google Scholar 

  • McKinley JM, Worden RH, Ruffell AH (1999) Smectite in sandstones: a review of the controls on occurrence and behaviour during diagenesis. Clay Min Cements Sandstones, Special Publ-Int Assoc Sedimentol 34:109–128

    Article  Google Scholar 

  • Middleton NJ (1986) A geography of dust storms in South-west Asia. J Climatol 6(2):183–196

    Article  Google Scholar 

  • Middleton NJ (1986) Dust storms in the Middle East. J Arid Environ 10(2):83–96

    Article  Google Scholar 

  • Middleton NJ, Kashani SS, Attarchi S, Rahnama M, Mosalman ST (2021) Synoptic causes and socio-economic consequences of a severe dust storm in the Middle East. Atm. 12(11):1435

    Google Scholar 

  • Milani AS, Barkhordari N, Shabani S, Mohammadi A (2021) Geomorphology and wind regime of barchans in the Lut Desert (Iran). Zeitschrift für Geomorphologie 62(4):265–290

    Article  Google Scholar 

  • Mohammadi A (2009) Mineralogical, textural, and geochemical map of the Gulf of Oman shelf surface sediments (Iranian part): marine geology department, geological survey of Iran. Scale 1:100000

    Google Scholar 

  • Mohammadi A (2010) Sedimentology and sedimentary geochemistry of Jazmurian playa. J Arid Biome 1(1):68–79 (In Persian)

    Google Scholar 

  • Mohammadi A, Burg JP, Winkler W, Ruh J, von Quadt A (2016a) Detrital zircon and provenance analysis of Late Cretaceous-Miocene onshore Iranian Makran strata: Implications for the tectonic setting. Geol Soc Am Bull 128(9–10):1481–1499

    Article  Google Scholar 

  • Mohammadi A, Burg JP, Winkler W (2016b) Detrital zircon and provenance analysis of Eocene-Oligocene strata in the South Sistan suture zone, southeast Iran: Implications for the tectonic setting. Lithosphere 8(6):615–632

    Article  Google Scholar 

  • Mohammadi A, Burg JP, Bouilhol P, Ruh J (2016c) U-Pb geochronology and geochemistry of Zahedan and Shah Kuh plutons, southeast Iran: Implication for closure of the South Sistan suture zone. Lithos 248:293–308

    Article  Google Scholar 

  • Mohammadi A, Burg JP, Guillong M, von Quadt A (2017) Arc magmatism witnessed by detrital zircon U-Pb geochronology, Hf isotopes and provenance analysis of Late Cretaceous-Miocene sandstones of onshore western Makran (SE Iran). Am J Sci 317(8):941–964

    Article  Google Scholar 

  • Mohammadi A, Burg JP, Ruh JB, Spezzaferri S (2023) Clastic carbonates in the South Sistan Basin (SE Iran): implications for subduction vergence and timing of collision. Int Geol Rev. https://doi.org/10.1080/00206814.2023.2191119

    Article  Google Scholar 

  • Mohammadifar A, Gholami H, Comino JR, Collins AL (2021) Assessment of the interpretability of data mining for the spatial modelling of water erosion using game theory. Catena 200:105178

    Article  Google Scholar 

  • Molinaroli E (1996) Mineralogical characterisation of Saharan dust with a view to its final destination in Mediterranean sediments. ENST Book series, the impact of desert dust across the Mediterranean, vol 11. Springer, Cham, pp 153–162

    Google Scholar 

  • Moore DM, Reynolds RC (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford. p, p 332

    Google Scholar 

  • Muhs DR, Prospero JM, Baddock MC, Gill TE (2014) Identifying sources of aeolian mineral dust: Present and past. Book, Mineral dust: A key player in the earth system. p 51-74

  • Normand R, Simpson G, Herman F, Biswas RH, Bahroudi A, Schneider B (2019) Dating and morpho-stratigraphy of uplifted marine terraces in the Makran subduction zone (Iran). Earth Surf Dyn 7(1):321–344

    Article  Google Scholar 

  • Normand R, Simpson G, Bahroudi A (2019) Pleistocene coastal evolution in the Makran subduction zone. Front Earth Sci 7:1–16

    Article  Google Scholar 

  • Normand R, Simpson G, Bahroudi A (2019) Extension at the coast of the Makran subduction zone (Iran). Terra Nova 31(6):503–510

    Article  Google Scholar 

  • Normand R, Simpson G, Herman F, Biswas RH, Bahroudi A (2019) Holocene sedimentary record and coastal evolution in the Makran subduction zone (Iran). Quaternary 2(2):1–20

    Article  Google Scholar 

  • Oguchi T (1997) Late quaternary sediment budget in alluvial-fan–source-basin systems in Japan. J Quat Sci 12(5):381–390

    Article  Google Scholar 

  • Otterman J, Fraser RS, Bahethi OP (1982) Characterization of tropospheric desert aerosols at solar wavelengths by multispectral radiometry from Landsat. J Geophys Res Oceans 87(C2):1270–1278

    Article  Google Scholar 

  • Pease PP, Tchakerian VP, Tindale NW (1998) Aerosols over the Arabian Sea: geochemistry and source areas for aeolian desert dust. J Arid Environ 39(3):477–496

    Article  Google Scholar 

  • Prins MA, Postma G, Weltje GJ (2000) Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: the Makran continental slope. Mar Geol 169(3–4):351–371

    Article  Google Scholar 

  • Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40(1):1–31

    Article  Google Scholar 

  • Rashki A, Eriksson PG, Rautenbach CDW, Kaskaoutis DG, Grote W, Dykstra J (2013) Assessment of chemical and mineralogical characteristics of airborne dust in the Sistan region. Iran. Chemosphere 90(2):227–236

    Article  Google Scholar 

  • Rashki A, Middleton NJ, Goudie AS (2021) Dust storms in Iran-distribution, causes, frequencies and impacts. Aeolian Res 48:100655

    Article  Google Scholar 

  • Rezaei M, Farajzadeh M, Mielonen T, Ghavidel Y (2019) Analysis of spatio-temporal dust aerosol frequency over Iran based on satellite data. Atmos Pollut Res 10(2):508–519

    Article  Google Scholar 

  • Rezaei M, Mohammadifar A, Gholami H, Mina M, Riksen MJ, Ritsema C (2023) Mapping of the wind erodible fraction of soil by bidirectional gated recurrent unit (BiGRU) and bidirectional recurrent neural network (BiRNN) deep learning models. Catena 223:106953

    Article  Google Scholar 

  • Shadfan H, Dixon JB (1984) Occurrence of palygorskite in the soils and rocks of the Jordan Valley. In: Singer A, Galán E (eds) Palygorskite–sepiolite: occurrences genesis and uses. Elsevier, Amsterdam, pp 187–198

    Google Scholar 

  • Shadfan H, Mashhady AS (1985) Distribution of palygorskite in sediments and soils of eastern Saudi Arabia. Soil Sci Soc Am J. 49:243–250

    Article  Google Scholar 

  • Shadfan H, Mashhady AS, Dixon JB, Hussen AA (1985) Palygorskite from tertiary formations eastern Saudi Arabia. Clays Clay Miner 33:451–457

    Article  Google Scholar 

  • Shayan S, Akbarian M, Yamani M, Sharifikia M, Maghsoudi M (2016) Dominant processes causing the formation of coastal sand masses, case study: western Makran coastal plain. J Mar Sci Technol 15(2):97–114

    Google Scholar 

  • Singer A (1989) Palygorskite and sepiolite group minerals. Min Soil Environ Second Ed. 1:829–872

    Google Scholar 

  • Sirocko F, Sarnthein M (1989) Wind-borne deposits in the northwestern Indian Ocean: record of Holocene sediments versus modern satellite data. NATO book series (ASIC). Paleoclimatol Paleometeorol: Modern Past Patterns Global Atmos Transp 282:401–433

    Google Scholar 

  • Smith SM (1973) Halite crystallization in supratidal Salina, Ometepec Lagoon, Baja California Mexico. AAPG Bull 57(4):805–805

    Google Scholar 

  • Sperazza M, Moore JN, Hendrix MS (2004) High-resolution particle size analysis of naturally occurring very fine-grained sediment through laser diffractometry. J Sediment Res 74(5):736–743

    Article  Google Scholar 

  • Taj RJ, Aref MA (2015) Structural and textural characteristics of surface halite crusts of a supratidal, ephemeral halite pan, South Jeddah, Red Sea Coast, Saudi Arabia. Facies 61:1–19

    Article  Google Scholar 

  • Tindale NW, Pease PP (1999) Aerosols over the Arabian Sea: atmospheric transport pathways and concentrations of dust and sea salt. Deep Sea Res Part II Top Stud Oceanogr 46(8–9):1577–1595

    Article  Google Scholar 

  • Torghabeh AK, Pradhan B, Jahandari A (2020) Assessment of geochemical and sedimentological characteristics of atmospheric dust in Shiraz, southwest Iran. Geosci Front 11(3):783–792

    Article  Google Scholar 

  • Walker AL, Liu M, Miller SD, Richardson KA, Westphal DL (2009) Development of a dust source database for mesoscale forecasting in southwest Asia. J Geophys Res Atmos 114:D18207

    Article  Google Scholar 

  • Washington R, Todd M, Middleton NJ, Goudie AS (2003) Dust-storm source areas determined by the total ozone monitoring spectrometer and surface observations. Ann Assoc Am Geogr 93(2):297–313

    Article  Google Scholar 

  • Wessel B, Huber M, Wohlfart C, Marschalk U, Kosmann D, Roth A (2018) Accuracy assessment of the global TanDEM-X digital elevation model with GPS data. ISPRS J Photogramm Remote Sens 139:171–182

    Article  Google Scholar 

  • Weyhenmeyer CE, Burns SJ, Waber HN, Macumber PG, Matter A (2002) Isotope study of moisture sources, recharge areas, and groundwater flow paths within the eastern Batinah coastal plain Sultanate of Oman. Water Resou Res 38(10):1184

    Article  Google Scholar 

  • Worden RH, Morad S (1999) Clay minerals in sandstones: controls on formation, distribution and evolution. Clay Min Cements Sandstones, Spec Publ-Int Assoc Sedimentol 34:3–42

    Google Scholar 

  • Worden RH, Griffiths J, Wooldridge LJ, Utley JEP, Lawan AY, Muhammed DD, Simon N, Armitage PJ (2020) Chlorite in sandstones. Earth Sci Rev 204:103105

    Article  Google Scholar 

  • Yamani M, Akbarian M (2013) The effects of sediment characteristics on piping development in Makran Flysch formation, Jask Area. J Geog Environ Hazards 7:1–17 (In Persian)

    Google Scholar 

Download references

Acknowledgements

The author thanks the Geological Survey of Iran and Razyeh Lak for valuable support during fieldwork and laboratory analysis, Jamshid Dehghan Nasiri, Majid Moini, and Behnam Pashazadeh for their help during fieldwork. Amaneh Kaveh-Firouz is thanked for her valuable discussions and her help on the river catchments topographic overview and coastal plain geomorphic landforms mapping. This work was supported by Istanbul Technical University (İTÜ)/BAP project (Hızlı Destek/FHD-2023-44776). Invaluable comments by two anonymous reviewers considerably improved the paper. We thank Ulrich Riller for efficient editorial handling of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mohammadi.

Ethics declarations

Conflict of interest

The author declare that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 37 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, A. Aeolian and fluvial processes influence on dust storms of Hormuz Strait and Makran coastal plains (SE Iran); insight from geomorphic landforms, and sediment texture and mineralogy. Int J Earth Sci (Geol Rundsch) 112, 1973–1987 (2023). https://doi.org/10.1007/s00531-023-02335-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-023-02335-0

Keywords

Navigation