Skip to main content

Advertisement

Log in

An ancient analogue of carbonate beach complex: the Upper Triassic limestones of Tran Formation, southwestern Bulgaria

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The study of two stratigraphic sections of the Tran Formation (upper Carnian–Norian) reveals the presence of a regressive carbonate beach succession. The interpretation of lower shoreface, upper shoreface, foreshore, and backshore deposits is based on field data, microfacies analysis and comparison with Holocene and ancient analogues. The various lower shoreface deposits include automicritic boundstones/cementstones which attest to a temporary establishment of the M factory most likely as an aftermath of the global Carnian Pluvial Episode. The upper shoreface grainstones show trough cross-bedding reflecting deposition by longshore currents. Grainstones/packstones of the foreshore subenvironment have several diagnostic features including low-angle plane lamination, keystone voids, eroded beachrock clasts, and well-sorted textures with marine phreatic and vadose cements. Their deposition was controlled by supply of granular material from the shoreface, incessant wave activity and daily tides, and early lithification protecting them from erosion and remobilization. The backshore strata comprise storm washover deposits (packstones, wackestones), mudstones deposited in marginal ponds, and agglutinated stromatolites (formed by trapping and binding in a tide-influenced setting). Some of the foreshore and backshore sediments were pedogenically modified, resulting in the formation of secondary matrix, root development, desiccation cracking, and grainification. Specific products of the early vadose alteration are laminoid fenestrae with crystal silt and diagenetic grainstones, packstones, and wackestones. The good preservation of the regressive beach succession was favored by late highstand progradation of the shoreline in a low accommodation setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

Yes.

Code availability

Not applicable.

References

  • Ahr WM (2008) Geology of carbonate reservoirs. The identification, description, and characterization of hydrocarbon reservoirs in carbonate rocks. Wiley, Hoboken

    Google Scholar 

  • Aissaoui DM, Purser BH (1983) Nature and origins of internal sediment in Jurassic limestones of Burgundy (France) and Fnoud (Algeria). Sedimentology 30:273–289

    Google Scholar 

  • Alonso-Zarza AM (2003) Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record. Earth-Sci Rev 60:261–298

    Google Scholar 

  • Alonso-Zarza MA, Calvo JP, García del Cura MA (1992) Palustrine sedimentation and associated features–grainification and pseudo-microkarst in the Middle Miocene (intermediate unit) of the Madrid Basin, Spain. Sediment Geol 76:43–61

    Google Scholar 

  • Andrieu S, Brigaud B, Barbarand J, Lasseur E (2017) Linking early diagenesis and sedimentary facies to sequence stratigraphy on a prograding oolitic wedge: the Bathonian of western France (Aquitaine Basin). Mar Petrol Geol 81:169–195

    Google Scholar 

  • Anthony EJ, Aagaard T (2020) The lower shoreface: morphodynamics and sediment connectivity with the upper shoreface and beach. Earth-Sci Rev. https://doi.org/10.1016/j.earscirev.2020.103334

    Article  Google Scholar 

  • Antonov M, Milovanov P, Popov A, Yordanov B, Gerdzhikov S et al (2011) Geological Map of the Republic of Bulgaria. Scale 1:50 000. Dren Map Sheet, Ministry of Environment and Water and Bulgarian National Geological Survey

  • Armenteros I, Daley B (1998) Pedogenic modification and structure evolution in palustrine facies as exemplified by the Bembridge Limestone (Late Eocene) of the Isle of Wight, southern England. Sediment Geol 119:275–295

    Google Scholar 

  • Aurell M, McNeill DF, Guyomard T, Kindler P (1995) Pleistocene shallowing-upward sequences in New Providence, Bahamas: signature of high-frequency sea-level fluctuations in shallow carbonate platforms. J Sediment Res B65:170–182

    Google Scholar 

  • Azerêdo AC (1998) Geometry and facies dynamics of Middle Jurassic carbonate ramp sandbodies, West-Central Portugal. Geol Soc (london) 149:281–314

    Google Scholar 

  • Baceta JI, Wright PP, Beavington-Penney SJ, Pujalte V (2007) Palaeohydrogeological control of palaeokarst macro-porosity genesis during a major sea-level lowstand: Danian of the Urbasa-Andia plateau, Navarra, North Spain. Sediment Geol 199:141–169

    Google Scholar 

  • Bashri M, Abdullatif O, Salih M (2017) Sedimentology and facies analysis of Miocene mixed siliciclastic–carbonate deposits of the Dam Formation in Al Lidam area, eastern Saudi Arabia. Arab J Geosci 10:472. https://doi.org/10.1007/s12517-017-3244-1

    Article  Google Scholar 

  • Beier JA (1985) Diagenesis of quaternary Bahamian beachrock: petrographic and isotopic evidence. J Sediment Petrol 55:755–761

    Google Scholar 

  • Belivanova V (1996) Sedimentology of the Trun Formation north of the town of Trun. Rev Bulg Geol Soc 57:19–24 ((in Bulgarian with English abstract))

    Google Scholar 

  • Belivanova V (2000) Triassic in the Golo Bardo Mountain: one example for the Balkanide facial type of Triassic in Bulgaria. In: Bachmann GH, Lerche I (eds) Epicontinental Triassic, Zentralbl Geol Paläont Teil I 9/10. Schweizerbart, Stuttgart, pp 1105–1121

    Google Scholar 

  • Belivanova V, Chatalov A (2005) New data on the Middle Triassic complex of inner-ramp carbonate shoals in western Bulgaria. Compt Rend Acad Bulg Sci 58:281–288

    Google Scholar 

  • Belkhedim S, Jarochowska E, Benhamou M, Nemra A, Sadji R, Munnecke A (2019) Interplay of autogenic and allogenic processes on the formation of shallow carbonate cycles in a synrift setting (lower Pliensbachian, Traras Mountains, NW Algeria). J Sediment Res 89:784–807

    Google Scholar 

  • Bover-Arnal T, Strasser A (2013) Relative sea-level change, climate and sequence boundaries: insights from the Kimmeridgian to Berriasian platform carbonates of Mount Saleve (E France). Int J Earth Sci 102:493–515

    Google Scholar 

  • Braithwaite CJR (2005) Carbonate sediments and rocks. A manual for earth scientists and engineers. Whittles Publishing, Dunbeath

    Google Scholar 

  • Budurov K, Trifonova E, Zagorchev I (1995) The Triassic in Southwest Bulgaria: stratigraphic correlation of key sections in the iskar carbonate group. Geol Balc 25:27–59

    Google Scholar 

  • Burchette TP, Wright VP, Faulkner TJ (1990) Oolitic sandbody depositional models and geometries, Mississippian of southwest Britain: implications for petroleum exploration in carbonate ramp settings. Sediment Geol 68:87–115

    Google Scholar 

  • Caggiati M, Gianolla P, Breda A, Celarc B, Preto N (2018) The start-up of the Dolomia Principale/Hauptdolomit carbonate platform (Upper Triassic) in the eastern Southern Alps. Sedimentology 65:1097–1131

    Google Scholar 

  • Cariou E, Olivier N, Pittet B, Mazin J-M, Hantzpergue P (2014) Dinosaur track record on a shallow carbonate-dominated ramp (Loulle section, Late Jurassic, French Jura). Facies 60:229–253

    Google Scholar 

  • Carpentier C, Lathuilière B, Ferry S (2010) Sequential and climatic framework of the growth and demise of a carbonate platform: implications for the peritidal cycles (Late Jurassic, North-eastern France). Sedimentology 57:985–1020

    Google Scholar 

  • Chatalov A (2013) A Triassic homoclinal ramp from the Western Tethyan realm, Western Balkanides, Bulgaria: integrated insight with special emphasis on the Anisian outer to inner ramp facies transition. Palaeogeogr Palaeoclimatol Palaeoecol 386:34–58

    Google Scholar 

  • Chatalov A (2017a) Anachronistic and unusual carbonate facies in uppermost Lower Triassic rocks of the western Balkanides. Bulgaria Facies 63:24. https://doi.org/10.1007/s10347-017-0505-0

    Article  Google Scholar 

  • Chatalov A (2017b) Quartz arenites and laterites in the Moesian Group (Upper Triassic), northwestern Bulgaria: possible evidence for the effect of the Carnian Humid Episode. Geol Balc 46:3–25

    Google Scholar 

  • Chatalov A (2020) First report of reef formation from the Balkanide type of Triassic: the Tran Formation (Upper Triassic) near the village of Gorna Sekirna, SW Bulgaria. Rev Bulg Geol Soc 81:124–126 ((in Bulgarian with English abstract))

    Google Scholar 

  • Chatalov A (2021) Automicritic boundstones/cementstones in the Upper Triassic Tran Formation from the vicinity of Chukovets village, Southwestern Bulgaria. Compt Rend Acad Bulg Sci 74:95–101

    Google Scholar 

  • Clark D, Heaviside J, Habib K (2004) Reservoir properties of Arab carbonates, Al Rayyan field, offshore Qatar. Geol Soc (london) 235:193–232

    Google Scholar 

  • Demicco RV, Hardie LA (1994) Sedimentary structures and early diagenetic features of shallow marine carbonate deposits. SEPM, Tulsa

    Google Scholar 

  • Donaldson JA, Ricketts BD (1979) Beachrock in proterozoic dolostone of the Belcher Islands, Northwest Territories, Canada. J Sediment Petrol 49:1287–1294

    Google Scholar 

  • Dunagan SP, Turner CE (2004) Regional paleohydrologic and paleoclimatic settings of wetland/lacustrine depositional systems in the Morrison Formation (Upper Jurassic), Western Interior, USA. Sediment Geol 167:269–296

    Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. Amer Assoc Petrol Geol Memoir 1:108–121

    Google Scholar 

  • Dunham RJ (1969) Early vadose silt in townsend mound (reef), New Mexico. Soc Econ Mineral Paleont 14:139–181

    Google Scholar 

  • Dunham RJ (1970) Keystone vugs in carbonate beach deposites (Abstr.). Amer Assoc Petrol Geol Bull 54:845

    Google Scholar 

  • Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth-Sci Rev 96:141–162

    Google Scholar 

  • Embry A, Klovan JE (1971) A late Devonian reef tract on northeastern Banks Island, Northwest Territories. Bull Can Petrol Geol 19:730–781

    Google Scholar 

  • Flügel E (2004) Microfacies of carbonate rocks. Analysis, interpretation, and application. Springer, Berlin

    Google Scholar 

  • Frébourg G, Hasler C-A, Le Guern P, Davaud E (2008) Facies characteristics and diversity in carbonate eolianites. Facies 54:175–191

    Google Scholar 

  • Freytet P, Plaziat J-C (1982) Continental carbonate sedimentation and pedogenesis: late cretaceous and early tertiary of southern France. Contr Sedim Geol 12:213

    Google Scholar 

  • Ganev M (1974) Stand der Kenntnisse über die Stratigraphie der Trias Bulgariens. In: Die Stratigraphie der alpin-mediterranean Trias. Simposium, Schrif Erdwiss Komm Oster Akad Wiss Bd 2:93–96

  • Gischler E (2007) Beachrock and intertidal precipitates. In: Nash DJ, McLaren SJ (eds) Geochemical sediments and landscapes. Blackwell, Oxford, pp 365–390

    Google Scholar 

  • Goldstein RH (1988) Paleosols of late Pennsylvanian cycle strata, New Mexico. Sedimentology 35:777–803

    Google Scholar 

  • Goldstein RH, Franseen EK, Lipinski CJ (2013) Topographic and sea level controls on oolite-microbialite-coralgal reef sequences: the terminal carbonate complex of southeast Spain. Amer Assoc Petrol Geol Bull 97:1997–2034

    Google Scholar 

  • Grădinaru M, Lazar I, Bucur II, Grădinaru E, Săsăran E et al (2016) The Valanginian history of the eastern part of the Getic Carbonate Platform (Southern Carpathians, Romania): evidence for emergence and drowning of the platform. Cret Res 66:11–42

    Google Scholar 

  • Gray AF, Adams AE (1995) Sheet voids and radiaxial fibrous calcite cement fills from Upper Jurassic beachrock, Calcaires-Blancs-de-Provence, Southeast France. Carb Evap 10:252–260

    Google Scholar 

  • Handford CR (1986) Facies and bedding sequences in shelf-storm-deposited carbonates—Ayetteville Shale and Pitkin Limestone (Mississippian), Arkansas. J Sediment Petrol 56:123–137

    Google Scholar 

  • Inden RF, Moore CH (1983) Beach environment. Carbonate depositional environments. Amer Assoc Petrol Geol Memoir 33:211–265

    Google Scholar 

  • Ivanov Z (2017) Tectonics of Bulgaria. Univ Publ House ‘St. Kliment Ohridski,’ Sofia

    Google Scholar 

  • James NP, Choquette PW (1990) Limestones: the sea-floor diagenetic environment. Diagenesis. Geosci Can Reprint Ser 4:13–34

    Google Scholar 

  • Jamison-Todd S, Stein N, Overeem I, Khalid A, Trower EJ (2020) Hurricane deposits on carbonate platforms: a case study of Hurricane Irma deposits on Little Ambergris Cay, Turks and Caicos Islands. J Geophys Res: Earth Surf. https://doi.org/10.1029/2020JF005597

    Article  Google Scholar 

  • Jin X, Gianolla P, Shi Z, Franceschi M, Caggiati M et al (2020) Synchronized changes in shallow water carbonate production during the Carnian Pluvial episode (Late Triassic) throughout Tethys. Glob Planet Change. https://doi.org/10.1016/j.gloplacha.2019.103035

    Article  Google Scholar 

  • Jones B, Pemberton SG (1987) The role of fungi in the diagenetic alteration of spar calcite. Can J Earth Sci 24:903–914

    Google Scholar 

  • Kahle CF (1977) Origin of subaerial Holocene calcareous crusts: role of algae, fungi and sparmicritization. Sedimentology 24:413–435

    Google Scholar 

  • Keim L, Schlager W (2001) Quantitative compositional analysis of a Triassic carbonate platform (Southern Alps, Italy). Sediment Geol 139:261–283

    Google Scholar 

  • Kerans C, Loucks RG (2002) Stratigraphic setting and controls on occurrence of high-energy carbonate beach deposits: Lower Cretaceous of the Gulf of Mexico. Gulf Coast Assoc Geol Soc Trans 52:517–526

    Google Scholar 

  • Kerans C, Zahm C, Bachtel SL, Hearty P, Cheng H (2019) Anatomy of a late Quaternary carbonate island: constraints on timing and magnitude of sea-level fluctuations, West Caicos, Turks and Caicos Islands, BWI. Quat Sci Rev 205:193–223

    Google Scholar 

  • Klappa CF (1980) Rhizoliths in terrestrial carbonates: classification, recognition, genesis and significance. Sedimentology 27:613–629

    Google Scholar 

  • Lasemi Y, Jahani D, Rassouli HA, Lasemi Z (2012) Ancient carbonate tidalites. In: Davies RA, Dalrymple RW (eds) Principles of tidal sedimentology. Springer, Dordrecht, pp 567–607

    Google Scholar 

  • Leonide P, Borgomano J, Masse J-P, Doublet S (2012) Relation between stratigraphic architecture and multi-scale heterogeneities in carbonate platforms: the Barremian–lower Aptian of the Monts de Vaucluse, SE France. Sediment Geol 265:87–109

    Google Scholar 

  • Lloyd RM, Perkins RD, Kerr SD (1987) Beach and shoreface ooid deposition on shallow interior banks, Turks and Caicos Islands, British West-Indies. J Sediment Petrol 57:976–982

    Google Scholar 

  • Magoon OT, Robbins LL, Ewing L (eds) (2000) Carbonate beaches 2000: first international symposium on carbonate sand beaches: conference proceedings. American Society of Civil Engineers, Reston

    Google Scholar 

  • Martindale RC, Zonneveld JP, Bottjer DJ (2010) Microbial framework in Upper Triassic (Carnian) patch reefs from Williston Lake, British Columbia, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 297:609–620

    Google Scholar 

  • Mazzullo SJ, Birdwell BA (1989) Syngenetic formation of grainstones and pisolites from fenestral carbonates in peritidal settings. J Sediment Petrol 59:605–611

    Google Scholar 

  • Méndez-Bedia I, Gallastegui G, Busquets P, Césari SN, Limarino CO et al (2020) Pedogenic and subaerial exposure microfabrics in a late Carboniferous–early Permian carbonate-volcanic lacustrine-palustrine system (San Ignacio Formation, Frontal Cordillera, Argentina). Andean Geol 47:275–294

    Google Scholar 

  • Mercedes-Martín R, Arenas C, Salas R (2014) Diversity and factors controlling widespread occurrence of syn-rift Ladinian microbialites in the western Tethys (Triassic Catalan Basin, NE Spain). Sediment Geol 313:68–90

    Google Scholar 

  • Michetiuc M, Catincut C, Bucur II (2012) An upper Jurassic-lower cretaceous carbonate platform from the Vâlcan Mountains (Southern Carpathians, Romania): paleoenvironmental interpretation. Geol Carp 63:33–48

    Google Scholar 

  • Missimer TM, Maliva RG (2005) Diagenesis of the Anastasia Formation in eastern coastal Florida: beachrock or bed-scale cementation. Gulf Coast Assoc Geol Soc Trans 55:543–553

    Google Scholar 

  • Moore CH, Wade WJ (2013) Carbonate reservoirs: porosity and diagenesis in a sequence stratigraphic framework. Elsevier, Amsterdam

    Google Scholar 

  • Nolting A (2017) Syndepositional deformation in steep-walled carbonate margins: insights from outcrop and numerical modeling of carbonate platforms in the recent and ancient rock record. Dissertation, University of Texas at Austin

  • Olivier N, Colombié C, Pittet B, Lathuiliére B (2011) Microbial carbonates and corals on the marginal French Jura platform (Late Oxfordian, Molinges section). Facies 57:469–492

    Google Scholar 

  • Payne JL, Lehrmann DJ, Christensen S, Wei J, Knoll AH (2006) Environmental and biological controls on the initiation and growth of a Middle Triassic (Anisian) reef complex on the Great Bank of Guizhou, Guizhou Province, China. Palaios 21:325–343

    Google Scholar 

  • Peyravi M, Rahimpour-Bonab H, Nader FH, Kamali MR (2016) Chemo-stratigraphy as a tool for sequence stratigraphy of the early triassic kangan formation, North of the Persian Gulf. Carb Evap 31:163–178

    Google Scholar 

  • Pomar L, Hallock P (2008) Carbonate factories: a conundrum in sedimentary geology. Earth-Sci Rev 87:134–169

    Google Scholar 

  • Popa L, Panaiotu CE, Grădinaru E (2014) An early middle Anisian (middle Triassic) Tubiphytes and cement crusts-dominated reef from North Dobrogea (Romania): facies, depositional environment and diagenesis. Acta Geol Polon 64:189–206

    Google Scholar 

  • Purser BH, Evans G (1973) Regional sedimentation along the Trucial Coast, S. E. Persian Gulf. In: Purser BH (ed) The Persian Gulf. Springer-Verlag, New York, pp 211–231

    Google Scholar 

  • Quijada IE, Benito MI, Suarez-Gonzalez P, Rodríguez-Martínez M, Campos-Soto S (2020) Challenges to carbonate-evaporite peritidal facies models and cycles: insights from Lower Cretaceous stromatolite-bearing deposits (Oncala Group, N Spain). Sediment Geol. https://doi.org/10.1016/j.sedgeo.2020.105752

    Article  Google Scholar 

  • Rankey EC (2014) Contrast between wave- and tide-dominated oolitic systems: holocene of crooked-acklins platform, southern Bahamas. Facies 60:405–428

    Google Scholar 

  • Reijmer JJG (2021) Marine carbonate factories: review and update. Sedimentology 68:1729–1796

    Google Scholar 

  • Reinhold C (1998) Ancient helictites and the formation of vadose crystal silt in upper Jurassic carbonates (Southern Germany). J Sediment Res 68:378–390

    Google Scholar 

  • Reitner J, Neuweiler F, Dingle P, Flajs G, Gautret P et al (1995) Mud mounds: a polygenetic spectrum of fine-grained carbonate buildups. Facies 32:1–70

    Google Scholar 

  • Riding R (1991) Classification of microbial carbonates. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin, pp 21–52

    Google Scholar 

  • Riding R, Liang L (2005) Geobiology of microbial carbonates: metazoan and seawater saturation state influences on secular trends during the Phanerozoic. Palaeogeogr Palaeoclimatol Palaeoecol 219:101–115

    Google Scholar 

  • Riding R, Virgone A (2020) Hybrid carbonates: in situ abiotic, microbial and skeletal co-precipitates. Earth-Sci Rev. https://doi.org/10.1016/j.earscirev.2020.103300

    Article  Google Scholar 

  • Riding R, Wright VP (1981) Paleosols and tidal-flat/lagoon sequences on a Carboniferous carbonate shelf: sedimentary associations of triple disconformities. J Sediment Petrol 51:1323–1339

    Google Scholar 

  • Riding R, Liang L, Lee J, Virgone A (2019) Influence of dissolved oxygen on secular patterns of marine microbial carbonate abundance during the past 490 Myr. Palaeogeogr Palaeoclimatol Palaeoecol 514:135–143

    Google Scholar 

  • Schlager W (2003) Benthic carbonate factories of the phanerozoic. Int J Earth Sci (geol Rundsch) 92:445–464

    Google Scholar 

  • Schmid DU (1996) Marine mikrobolithe und mikroinkrustierer aus dem oberjura. Profil 9:101–251

    Google Scholar 

  • Sevillano A, Rosales I, Bádenas B, Barnolas A, López-García JM (2019) Spatial and temporal facies evolution of a Lower Jurassic carbonate platform, NW Tethyan margin (Mallorca, Spain). Facies 65:3. https://doi.org/10.1007/s10347-018-0545-0

    Article  Google Scholar 

  • Shinn EA (1968) Practical significance of birdseye structures in carbonate rocks. J Sediment Petrol 38:215–223

    Google Scholar 

  • Shinn EA (2009) The mystique of beachrock. Perspectives in carbonate geology. Inter Assoc Sediment 41:19–28

    Google Scholar 

  • Steinen RP (1974) Phreatic and vadose diagenetic modification of Pleistocene limestone: petrographic observations from subsurface of Barbados, West Indies. Amer Assoc Petrol Geol Bull 58:1008–1024

    Google Scholar 

  • Strasser A, Arnaud H, Baudin F, Röhl U (1995) Small-scale shallow-water carbonate sequences of Resolution Guyot (sites 866, 867, and 868). In: Winterer EL, Sager WW, Firth JV, Sinton JM (eds) Proceedings of the Ocean Drilling Program, Scientific Results 143:119–131

  • Stricklin FL Jr, Smith CI (1973) Environmental reconstruction of a carbonate beach complex: Cow Creek (Lower Cretaceous) Formation of central Texas. Geol Soc Amer Bull 84:1349–1368

    Google Scholar 

  • Suarez-Gonzalez P, Quijada E, Benito MI, Mas R, Merinero R, Riding R (2014) Origin and significance of lamination in Lower Cretaceous stromatolites and proposal for a quantitative approach. Sediment Geol 300:11–27

    Google Scholar 

  • Suarez-Gonzalez P, Benito MI, Quijada IE, Mas R, Campos-Soto S (2019) ‘Trapping and binding’: a review of the factors controlling the development of fossil agglutinated microbialites and their distribution in space and time. Earth-Sci Rev 194:182–215

    Google Scholar 

  • Trifonova E, Zagorchev I (1990) Late Triassic stratigraphy and paleogeography in Golo Bardo Unit. SW Bulgaria Geol Balc 20:40

    Google Scholar 

  • Tronkov D (1983) Stratigraphic problems of Iskar Carbonate Group (Triassic) in South-west Bulgaria. Geol Balc 13:91–100 ((in Russian with English abstract))

    Google Scholar 

  • Vaptsarova A (1986) Lithological and facies characteristics of the Triassic rocks in Vlahina Mountains (Southwest Bulgaria). Geol Balc 16:55–71 ((in Russian with English abstract))

    Google Scholar 

  • Verwer K, Porta GD, Merino-Tomé O, Kenter JAM (2009) Controls and predictability of carbonate facies architecture in a Lower Jurassic three-dimensional barrier-shoal complex (Djebel Bou Dahar, High Atlas, Morocco). Sedimentology 56:1801–1831

    Google Scholar 

  • Vieira MM, De Ros LF (2006) Cementation patterns and genetic implications of Holocene beachrocks from northeastern Brazil. Sediment Geol 192:207–230

    Google Scholar 

  • Vollbrecht R, Meischner D (1993) Sea level and diagenesis: a case study on Pleistocene beaches, Whalebone Bay, Bermuda. Geol Rdsch 82:248–262

    Google Scholar 

  • Vousdoukas MI, Velegrakis AF, Plomaritis TA (2007) Beachrock occurrence, characteristics, formation mechanisms and impacts. Earth-Sci Rev 85:23–46

    Google Scholar 

  • Wallace MW, Hood AVS, Woon EMS, Giddings JA, Fromhold TA (2015) The Cryogenian Balcanoona reef complexes of the Northern Flinders Ranges: implications for Neoproterozoic ocean chemistry. Palaeogeogr Palaeoclimatol Palaeoecol 417:320–336

    Google Scholar 

  • Ward WC, Brady MJ (1979) Strandline sedimentation of carbonate grainstones, Upper Pleistocene, Yucatan Peninsula, Mexico. Amer Assoc Petrol Geol Bull 63:362–369

    Google Scholar 

  • Webb GE (1994) Paleokarst, paleosol, and rocky-shore deposits at the Mississippian-Pennsylvanian unconformity, northwestern Arkansas. Geol Soc Amer Bull 106:634–648

    Google Scholar 

  • Wright PV (1986) The role of fungal biomineralization in the formation of early carboniferous soil fabrics. Sedimentology 33:831–838

    Google Scholar 

  • Wright VP (1990) Syngenetic formation of grainstones and pisolites from fenestral carbonates in peritidal settings. Discussion J Sediment Petrol 60:309–310

    Google Scholar 

  • Wright VP (1992) A revised classification of limestones. Sediment Geol 76:177–185

    Google Scholar 

  • Wright VP (1994) Paleosols in shallow marine carbonate sequences. Earth-Sci Rev 35:367–395

    Google Scholar 

  • Zagorchev I (2001) Introduction to the geology of Southwestern Bulgaria. Geol Balc 31:3–52

    Google Scholar 

Download references

Acknowledgements

I thank K. Metodieva (Eurotest-Control, Sofia) for assisting during the field work. The detailed and constructive reviews by Eugene Rankey and Pascal Kindler are greatly acknowledged.

Funding

No.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanas Chatalov.

Ethics declarations

Conflict of interest

No.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 157 KB)

Supplementary file2 (PDF 328 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatalov, A. An ancient analogue of carbonate beach complex: the Upper Triassic limestones of Tran Formation, southwestern Bulgaria. Int J Earth Sci (Geol Rundsch) 111, 463–489 (2022). https://doi.org/10.1007/s00531-021-02124-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-021-02124-7

Keywords

Navigation