Skip to main content
Log in

Kinematics, strain pattern, and temperature environment of the Yeba shear zone and multistage structural evolution of the Yeba Group

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Yeba ductile shear zone is located on the southern margin of the middle Gangdese magmatic belt and southeast of Lhasa, China. In this paper, we systematically investigate the structural deformation history in the Yeba Group and provide the kinematics, strain pattern, mean vorticity number and temperature environment of the Yeba ductile shear zone. Three tectonic events are identified in the Yeba Group of the study area. The Yeba shear zone represents the late stage of the northward subduction of the Neo-Tethys Ocean (D1 stage, 94–85 Ma). Since the collision of the Indian and Eurasian plates, principal compressive stress (σ1) in the north–south direction was generated in the Yeba Group and formed composite folds (D2 stage, ~ 50 Ma). The D3-stage structural deformation event of the Yeba Group in the study area is represented by the Woka ductile shear zone (22.38–14.6 Ma). Electron backscattering diffraction and chlorite geothermometry demonstrate that upper greenschist facies (213–295 °C) and lower greenschist facies (400–550 °C) conditions developed in the Yeba shear zone. Finite strain measurements of the Yeba ductile shear zone indicate that almost all deformed rocks exhibit an oblate ellipsoid consistent with near-flattening strain. Kinematic vorticity analysis of the Yeba shear zone yielded values (Wm) of 0.49–0.78, indicating a bulk general shear deformation regime with a combination of 58% pure shear and 42% simple shear. The kinematic vorticity number (58% pure shear), flattening strain pattern, and presence of opposite indicators in the same mylonitic foliation support the occurrence of a transpressive structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Behyari M, Shahbazi M (2019) Strain and vorticity analysis in the Zagros suture zone (W Iran): implications for Neo-Tethys post–collision events. J Struct Geol 126:198–209

    Google Scholar 

  • Bretherton FP (1962) The motion of rigid particles in shear flow at low Reynolds number. J Fluid Mech 14:284–301

    Google Scholar 

  • Brunel M, Maliakov Y (1972) Utilisation de I’orientation preferentielle du quartz comme marqueur de la deformation hercynienne dans le granite prehercynien du Mendic (Massif Central francais). C R Acad Sci Paris 274:2627–2630

    Google Scholar 

  • Cathelineau M (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner 23:471–485

    Google Scholar 

  • Cathelineau M, Nieva CD (1985) A chlorite solid solution geothermometer the Los Azufres (Mexico) geothermal system. Contrib Mineral Petrol 91:235–244

    Google Scholar 

  • Chang CF, Zheng SL (1973) Tectonic features of the Mount Jolmo Lungma region in southern Tibet, China. Sci Geol Sin 1:1–12

    Google Scholar 

  • Chen W, Ma CQ, Bian QJ, Hu YQ, Long TC, Yu SL, Cheng DM, Tu JH (2009) Evidence from geochemistry and zircon U-Pb geochronology of volcanic rocks of Yeba Group in demingding area, the east of Middle Gangdise. Tibet Geol Sci Technol Inf 28:31–40 (in Chinese with English abstract.)

    Google Scholar 

  • Chung SL, Liu D, Ji J, Chu MF, Lee HY, Wen DJ, Zhang Q (2003) Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology 31(11):1021–1024

    Google Scholar 

  • Cao S, Neubauer F, Liu J, Bernroider M, Cheng X, Li J, Yu J, Genser J (2016) Rheological weakening of high-grade mylonites during low-temperature retrogression: the exhumed continental ailao shan-red river fault zone, SE Asia. J Asian Earth Sci 139:40–60

    Google Scholar 

  • Debon F, Lefort P, Sheppard SMF, Sonet J (1986) The four plutonic belts of the Transhimalaya–Himalaya: a chemical, mineralogical, isotopic, and chronological synthesis along a Tibet-Nepal section. J Petrol 27(1):219–250

    Google Scholar 

  • Decaritat P, Hutcheon I, Walshe JL (1993) Chlorite geothermometry: a review. Clays Clay Miner 41(2):219–239

    Google Scholar 

  • Diaz-Azpiroz M, Fernandez C, Czeck DM (2019) Are we studying deformed rocks in the right sections? Best practices in the kinematic analysis of 3D deformation zones. J Struct Geol 125:218–225

    Google Scholar 

  • Dong G, Mo X, Zhao Z, Zhu D, Wang L, Chen T, Li B (2006a) Magmam mixing in middle Part of Gangdise magma belt: evidences from granitoid complex. Acta Petrol Sin 22(4):835–844

    Google Scholar 

  • Dong Y, Xu J, Zeng Q, Wang Q, Mao G, Li J (2006b) Is there a Neo–Tethys’ subduction record earlier than arc volcanic rocks in the Sangri Group? Acta Petrol Sin 22:661–668 (in Chinese with English abstract.)

    Google Scholar 

  • Duan J, Tang J, Mason R, Zheng W, Ying L (2015) Zircon u–pb age and deformation characteristics of the jiama porphyry copper deposit, Tibet: implications for relationships between mineralization, structure and alteration. Resour Geol 64(4):316

    Google Scholar 

  • Feng Y, Wang G, Meng Y, Li D, Xu X, Lu Y, Li J, Liu H (2020) Kinematics, strain patterns, rheology, and geochronology of Woka ductile shear zone: product of uplift of Gangdese batholith and Great Counter Thrust activity. Geol J 55(11):7251–7271

    Google Scholar 

  • Flinn D (1962) On folding during three–dimensional progressive deformation. Q J Geol Soc 118(1-4):385–428. https://doi.org/10.1144/gsjgs.118.1.0385.

    Article  Google Scholar 

  • Forte AM, Bailey CM (2007) Testing the utility of the porphyroclasts hyperbolic distribution method of kinematic vorticity analysis. J Struct Geol 29:983–1001

    Google Scholar 

  • Fossen H, Tikoff B (1997) Forward modelling of non–steady–state deformations and the minimum strain path. J Struct Geol 19:987–996

    Google Scholar 

  • Fossen H, Tikoff B (1998) Extended models of transpression and transtension, and application to tectonic settings. In: Holdworth RE, Strachan RA, Dewey JE (eds) Continental transpressional and transtensional tectonics, vol 135. Geological Society, London, pp 15–33

    Google Scholar 

  • Fry N (1979) Random point distribution and strain measurements in rocks. Tectonophysics 60:89–105

    Google Scholar 

  • Geng Q, Pan G, Jin Z, Wang L, Zhu D, Liao Z (2005) Geochemistry and genesis of the Yeba volcanic rocks in the Gangdise magmatic arc, Tibet. Earth Sci 30:747–760 (in Chinese with English abstract.)

    Google Scholar 

  • Hara I, Takeda K, Kimura T (1973) Preferred lattice orientation of quartz in shear deformation. J Sci Hiroshima Univ Ser C 7:1–10

    Google Scholar 

  • He S, Kapp P, Decelles PG, Gehrels GE, Heizler M (2007) Cretaceous–tertiary geology of the gangdese arc in the linzhou area, southern tibet. Tectonophysics 433(1–4):15–37

    Google Scholar 

  • Hsu T (1966) The characteristics of coaxial and non–coaxial strain paths. J Strain Anal Eng 1:216–222

    Google Scholar 

  • Huang F, Xu JF, Chen JL, Kang ZQ, Dong XH (2015) Early Jurassic volcanic rocks form the Yeba Group and Sangri Group: products of continental marginal arc and intra–oceanic arc during the subduction of Neo-Tethys Ocean? Acta Petrol Sin 31:2089–2100 (in Chinese with English abstract.)

    Google Scholar 

  • Huang F, Zhang Z, Xu J, Li X, Tian Y (2019) Fluid flux in the lithosphere beneath southern tibet during neo-tethyan slab breakoff: evidence from an appinite–granite suite. Lithos 344–345:324–338

    Google Scholar 

  • Hu X, Garzanti E, Moore T, Raffi I (2015) Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59±1 Ma). Geology 43(10):859–862

    Google Scholar 

  • Jessup MJ, Law RD, Frassi C (2007) The rigid grain net (RGN): an alternative method for estimating mean kinematic vorticity number (Wm). J Struct Geol 9:411–421

    Google Scholar 

  • Jiang D, Williams PF (1998) High–strain zones: a unified model. J Struct Geol 20:1105–1120

    Google Scholar 

  • Jiang G, Guo J (2002) Characteristics and their geological significance of the Xaitongmoin–Lhasa–Woka ductile–brittle shear zone in Tibet. Tibet Geol 2:64–70 (in Chinese with English abstract.)

    Google Scholar 

  • Ji SC (1988) Tectonic significance of partial melting (1): experiment study on transition of deformation mechanism. Acta Geosci Sin 4:347–356

    Google Scholar 

  • Ji W, Wu F, Liu C, Chung S (2009) Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet. Sci China Ser D Earth Sci 52(9):1240–1261

    Google Scholar 

  • Jin C (1978) Igneous rock belts in the Himalayas and the Gandise arc and their genetic model. Sci Geol Sin 4:297–312

    Google Scholar 

  • Jowett EC (1991) Fitting iron and magnesium into the hydrothermal chlorite geothermometer: GAC/MAC/SEG Joint Annual Meeting (Toronto, May 27.29, 1991), Program with Abstracts 16, A62, Toronto

  • Kang Z, Xu J, Wilde S, Feng ZH, Chen JL, Wang BD, Fu WC, Pan HB (2014) Geochronology and geochemistry of the Sangri Group volcanic rocks, southern Lhasa Terrane: implications for the early subduction history of the Neo-Tethys and Gangdese magmatic arc. Lithos 200:157–168

    Google Scholar 

  • Keshavarz S, Faghih A (2020) Heterogeneous sub–simple deformation in the Gol–e–Gohar shear zone (Zagros, SW Iran): insights from microstructural and crystal fabric analyses. Int J Earth Sci 109(2):421–438

    Google Scholar 

  • Kranidiotis P, MacLean WH (1987) Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Economic Geology 82(7):1898–1911

  • Law RD, Knipe RJ, Dayan H (1984) Strain–path partitioning within thrust sheets: microstructural and petrofabric evidence from the Moine thrust zone at Loch Eriboll, northwest Scotland. J Struct Geol 6:477–497

    Google Scholar 

  • Law RD, Searle MP, Simpson RL (2004) Strain, deformation temperatures and vorticity of flow at the top of the Greater Himalayan Slab, Everest Massif, Tibet. J Geol Soc London 161(2):305–320

    Google Scholar 

  • Li JB, Wang T, Ouyang ZX (2010) Strain and kinematic vorticity analysis of the Louzidian low–angle ductile shear detachment zone in Chifeng, inner Mongolia, China. Sci China Ser D Earth Sci 53(11):1611–1624

    Google Scholar 

  • Liu JL, Cao SY, Zou YX, Song ZJ (2008) EBSD analysis of rock fabrics and its application. Geol Bull China 27(10):1638–1645 (in Chinese with English abstract.)

    Google Scholar 

  • Lode W (1926) Versuche über den Einfluß der mittleren Hauptspannung auf das Fließen der Metalle Eisen. Kupfer Und Nickel z Phys 36:913–939

    Google Scholar 

  • Mahmoudi Sivand S, Faghih A, Keshavarz S, Soleimani M (2021) Characterizing syn-convergent extension along the Neybaz-Chatak detachment shear zone, Central Iran: insights from microstructures, quartz petrofabrics and flow vorticity analysis. J Struct Geol 143:104270. https://doi.org/10.1016/j.jsg.2020.104270

    Article  Google Scholar 

  • Mainprice D, Bouchez JL, Blumenfeld P, Tubià JM (1986) Dominant c slip in naturally deformed quartz: implications for dramatic plastic softening at high temperature. Geology 14(10):819–822

    Google Scholar 

  • Mansouri SM, Keshavarz S, Shahpasandzadeh M, Faghih A (2021) Strain and vorticity analyses using rotated porphyroclasts in the Tanbour metamorphic rocks: Evidence of transpressional deformation along the Sanandaj-Sirjan metamorphic belt, SW Iran. J Struct Geol 148:104358

    Google Scholar 

  • Ma SW, Xu ZQ, Zhang ZK, Ma Y, Zhao ZB, Pang X, Zhao XW, Wang H (2016) Structural deformation and its constrains of mineralization of the Jiama copper–polymetallic deposit, southern Tibet. Acta Petrol Sin 32(12):3781–3799

    Google Scholar 

  • Ma XX, Xu ZQ, Chen XJ, Meert JG, He ZY, Liang FH, Meng YK, Ma SW (2017a) The origin and tectonic significance of the volcanic rocks of the Yeba Group in the Gangdese magmatic belt, South Tibet. J Earth Sci-China 28:265–282

    Google Scholar 

  • Ma Y, Xu ZQ, Li GW, Ma SW, Ma XX, Chen XJ, Zhao ZB (2017b) Crustal deformation of the Gangdese Cretaceous back–arc basin and formation of Proto–plateau, South Tibet. Acta Petrol Sin 33(12):3861–3872 (in Chinese with English abstract.)

    Google Scholar 

  • Ma XX, Meert J, Xu ZQ, Zhao ZB (2018) The Jurassic Yeba Group in the Gangdese arc of S. Tibet: implications for upper plate extension in the Lhasa terrane. Int Geol Rev 61(4):481–503

    Google Scholar 

  • Means WD, Hobbs BE, Lister GS, Williams PF (1980) Vorticity and non–coaxiality in progressive deformations. J Struct Geol 2(3):371–378

    Google Scholar 

  • Meng YK, Xu ZQ, Chen XJ, Ma XX, Ma SW (2015a) Isotope study of alkali–feldspar granite zircon in the middle Gangdese batholith and its geological significance. Geol China 42(5):1202–1213 (in Chinese with English abstract.)

    Google Scholar 

  • Meng YK, Xu ZQ, Chen XJ, Ma XX, He ZY, Zhang XS (2015b) Zircon geochronology and Hf isotopic composition of Eocene granite batholith from Xaitongmoin in middle Gangdese and geological significance. Geotecton Et Metallog 39(5):933–948 (in Chinese with English abstract.)

    Google Scholar 

  • Meng Y, Dong H, Cong Y, Xu Z, Cao H (2016) The early–stage evolution of the Neo-Tethys Ocean: evidence from granitoids in the middle Gangdese batholith, southern Tibet. J Geodyn 94:34–49

    Google Scholar 

  • Mo X (2011) Magmatism and evolution of the Tibetan Plateau. Geol J China Univ 17(3):351–367 (in Chinese with English abstract.)

    Google Scholar 

  • Mo X, Hou Z, Niu Y, Dong G, Qu X, Zhao Z, Yang Z (2007) Mantle contributions to crustal thickening during continental collision: evidence from Cenozoic igneous rocks in southern Tibet. Lithos 96:225–242

    Google Scholar 

  • Mo X, Niu Y, Dong G, Zhao Z, Hou Z, Zhou S, Ke S (2008) Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong Volcanic Succession in southern Tibet. Chem Geol 250:49–68

    Google Scholar 

  • Molnar P, Pardo-Casas F, Stock J (1988) The cenozoic and late cretaceous evolution of the Indian Ocean Basin: Uncertainties in the reconstructed positions of the Indian, African and Antarctic Plates. Basin Res 1(1):23–40

    Google Scholar 

  • Mookerjee M, Peek S (2014) Evaluating the effectiveness of Flinn’s k–value versus Lode’s ratio. J Struct Geol 68:33–43

    Google Scholar 

  • Mookerjee M, Canada A, Fortescue FQ (2016) Quantifying thinning and extrusion associated with an oblique subduction zone: an example from the Rosy Finch Shear Zone. Tectonophysics 693:290–303

    Google Scholar 

  • Najman Y, Appel E, Boudagher-Fadel M, Bown P, Carter A, Garzanti E, Godin L, Han JT, Liebke U, Oliver G, Parrish R, Vezzoli G (2010) Timing of India-Asia collision: geological, biostratigraphic, and palaeomagnetic constraints. J Geophys Res-Sol Earth. https://doi.org/10.1029/2010JB007673

    Article  Google Scholar 

  • Pan GT (2006) Spatial temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrol Sin 22:521–533 (in Chinese with English abstract.)

    Google Scholar 

  • Pan G, Wang L, Li R, Yuan S, Ji W, Yin F (2012) Tectonic evolution of the qinghai-tibet plateau. J Asian Earth Sci 53:3–14

    Google Scholar 

  • Passchier CW (1987) Stable position of rigid objects in non–coaxial flow–a study in vorticity analysis. J Struct Geol 9:670–690

    Google Scholar 

  • Passchier CW (1988) Analysis of deformation path in shear zones. Geol Rundsch 77:309–318

    Google Scholar 

  • Platt JP, Behrmann JH (1986) Structures and fabrics in a crustal scale shear zone, Betic Cordilleras, S.E. Spain J Struct Geol 8:15–34

    Google Scholar 

  • Samani B, Faghih A, Grasemann B (2020) Strain pattern and vorticity analysis of deformed conglomerates in the Heneshk area within the Sanandaj-Sirjan Metamorphic Belt, Zagros Mountains. Iran Int J Earth Sci 109(1):145–157

    Google Scholar 

  • Sarkarinejad K, Keshavarz S, Faghih A, Samani B (2017) Kinematic analysis of rock flow and deformation temperature of the sirjan thrust sheet, zagros orogen. Iran Geol Mag 154(01):147–165

    Google Scholar 

  • Schärer U, Xu RH, Allègre CJ (1984) U–Pb geochronology of Gandese (Transhimalaya) plutonism in the Lhasa–Xigaze region Tibet. Earth and Planetary Science Letters 69(2):311–320

    Article  Google Scholar 

  • Simonetti M, Carosi R, Montomoli C, Langone A, D’Addario E, Mammoliti E (2018) Kinematic and geochronological constraints on shear deformation in the ferriere-mollières shear zone (argentera-mercantour massif, western alps): implications for the evolution of the southern european variscan belt. Int J Earth Sci 107:2163

    Google Scholar 

  • Simpson C, DePaor DG (1993) Strain and Kinematic analysis in general shear zones. J Struct Geol 15:1–20

    Google Scholar 

  • Soleimani M, Faghih A, Kusky T (2021) Mesozoic compressional to extensional tectonics in the Central East Iranian Microcontinent: evidence from the Boneh Shurow Metamorphic Core Complex. J Geol Soc. https://doi.org/10.1144/jgs2020-123

    Article  Google Scholar 

  • Song PF (2013) The structural deformation features of Xaitongmoin—Numa ductile shear zone, south Lhasa and its geological significance [Master dissertation]. China University of Geosciences, Wuhan, pp. 1–69 [in Chinese with English abstract.]

  • Tan J, Liu R (2007) The necessity of Fe/(Fe+ Mg) adjustment on the compositional geothermometer of low temperature chlorite. Acta Mineralogica Sinica 27(2):173–178 (in Chinese with English abstract.)

  • Tapponnier P, Peltzer G, Le Dain A, Armijo R, Cobbold P (1982) Propagating extrusion tectonics in asia: new insights from simple experiments with plasticine. Geology 10(12):611

    Google Scholar 

  • Tikoff B, Fossen H (1995) The limitations of three–dimensional kinematic vorticity analysis. J Struct Geol 17:1771–1784

    Google Scholar 

  • Wallis SR (1992) Vorticity analysis in a metachert from the Sanbagawa Belt, SW Japan. J Struct Geol 14:271–280

    Google Scholar 

  • Wang GH, Zeng QG, Pu C (1995) A study of the Xaitongmoin-Wuyu oblique slip ductile shear zone in Tibet. Tibet Geol 1:93–98 (in Chinese with English abstract.)

    Google Scholar 

  • Wang E, Kamp PJ, Xu G, Hodges KV, Meng K, Chen L, Luo H (2015) Flexural bending of southern Tibet in a retro foreland setting. Sci Rep-UK 5:12076

    Google Scholar 

  • Wei YQ, Zhao ZD, Niu YL, Zhu DC, Liu D, Wang Q, Hou ZQ, Mo XX, Wei JC (2017) Geochronology and geochemistry of the Early Jurassic Yeba Group volcanic rocks in southern Tibet: initiation of back–arc rifting and crustal accretion in the southern Lhasa terrane. Lithos 278–281:477–490

    Google Scholar 

  • Wu F, Ji W, Wang J, Liu C, Chung S, Clift PD (2014) Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision. Am J Sci 314(2):548–579

    Google Scholar 

  • Xiong Q, Zuo Z (1999) Basic characteristics of the ductile shear zone on the southern margin of the central sector of the Gangdese rock belt, Tibet. Reg Geol China 02:64–69 (in Chinese with English abstract.)

    Google Scholar 

  • Xiong Q, Zhou L, Zou G, Huang Z (1992) Discoveries of two shear zones in the middle of Yarlung Zangbo river. Reg Geol China 03:286 (in Chinese with English abstract.)

    Google Scholar 

  • Xiong Q, Chen J, Xu J, Huang F, Chen X, Zeng Y, Lei M (2015) LA–ICP–MS zircon U-Pb geochronology, geochemical characteristics and genetic study of Yeba Group lavas in Demingding area, Southern Tibet. Geol Bull China 34:1645–1655 (in Chinese with English abstract.)

    Google Scholar 

  • Xu R, Allègre C (1984) U-Pb geochronology of the Gangdese (Transhimalaya) plutonism in the Lhasa-Xigaze region, Tibet. Earth Planet Sci Lett 69:311–320

    Google Scholar 

  • Xu Z, Dilek Y, Cao H, Yang J, Robinson P, Ma C, Li H, Jolivet M, Roger F, Chen X (2015) PaleoTethyan evolution of Tibet as recorded in the East Cimmerides and West Cathaysides. J Asian Earth Sci 105:320–337

    Google Scholar 

  • Xypolias P (2010) Vorticity analysis in shear zones: a review of methods and applications. J Struct Geol 42:1–21

    Google Scholar 

  • Yin J, Gou J, Pei S, Jiang G (1998) The middle jurassic bivalve fauna in the volcanic rock series (Yeba formation) of the Lhasa massif and its paleogeographic significance. Geol Bull China 17(02):132–136 (in Chinese with English abstract.)

    Google Scholar 

  • Yin J, Grant-Mackie J (2005) Late Triassic-Jurassic bivalves from volcanic sediments of the Lhasa block, Tibet. N Z J Geol Geophys 48:555–577

    Google Scholar 

  • Zeng Z, Liu D, Zerenzaxi N (2009) Geochemistry and tectonic setting of lavas in the Yeba Group in the eastern part of the Gangdise belt. J Jilin Univ (earth Sci Edn) 39:435–445 (in Chinese with English abstract.)

    Google Scholar 

  • Zhong K, Yao D, Dorji ZF, Xu C, Huang X, Lu B, Lei B, Lin J, Bao C, Yan G (2013) Structural features of Yeba tectonite group in Jiama (Gyama)–Qulong area of Tibet. Acta Geosci Sin 34:75–86 (in Chinese with English abstract.)

    Google Scholar 

  • Zhu D, Pan G, Chung S, Liao Z, Wang L, Li G (2008) SHRIMP zircon age and geochemical constraints on the origin of Lower Jurassic volcanic rocks from the Yeba Group, southern Gangdese, South Tibet. Int Geol Rev 50(5):442–471

    Google Scholar 

  • Zhu D, Zhao Z, Pan G, Lee H, Kang Z, Liao Z (2009) Early cretaceous subduction-related adakite-like rocks of the gangdese belt, southern tibet: products of slab melting and subsequent melt-peridotite interaction? J Asian Earth Sci 34(3):298–309

    Google Scholar 

  • Zhu D, Zhao Z, Niu Y, Mo X, Chung S, Hou Z, Wu F (2011) The Lhasa Terrane: record of a microcontinent and its histories of drift and growth. Earth Planet Sci Lett 301(1–2):241–255

    Google Scholar 

  • Zou G, Zhong D (1993) The basic features and deformation mechanism of ductile shear zone in Quxu Area, Tibet. Geol Jiangxi 7(2):121–127 (in Chinese with English abstract.)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the associate editor of the International Journal of Earth Sciences, and the two reviewers are appreciated. This study was financially supported by the National Natural Science Foundation of China (Grant no. 4217021341); the Specialized Scientific Research fund of Tibet Autonomous Region Geological and Mineral Exploration and Development Bureau and the China Geological Survey Scientific Research Project (Grant no. DD20190167 and DD20190053), the Natural Science Foundation of Shandong Province (Grant no. ZR2019QD002), and the National Natural Science Foundation of China (Grant no.41902230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genhou Wang.

Appendix

Appendix

Rigid grain net (RGN) is a graphical vorticity calculation method based on the shape and direction orientation of porphyroclasts representing rigid rotated objects in a flowing matrix. According to its shape factor (B*) and the angle between the long axis and the foliation (θ), each porphyroclast is drawn on the RGN. The shape factor (B*) used here is defined by Bretherton (1962) and applied by Passchier (1987), as presented by Jessup et al. (2007):

$$B* \, = \, \left( {{{{\text{Mx}}^{{2}} {-}{\text{ Mn}}^{{2}} } \mathord{\left/ {\vphantom {{{\text{Mx}}^{{2}} {-}{\text{ Mn}}^{{2}} } {\left( {{\text{Mx}}^{{2}} + {\text{ Mn}}^{{2}} } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {{\text{Mx}}^{{2}} + {\text{ Mn}}^{{2}} } \right)}}} \right),$$

where Mx and Mn are the lengths of the long and short axes of the porphyroclasts, respectively. For the RGN, positive and negative semihyperbolas are plotted at 0.025 increments of Wm (Jessup et al. 2007). The maximum B*, as the critical threshold (Rc) between a freely rotated grain and a grain in a stable sinking position, is defined by the transition from semihyperbolas to vertical lines. Based on the position where the critical shape factor (B*) is equal to the aspect ratio (R; R = Mx/Mn) of the rotated porphyroclasts at the critical threshold (Rc), the average kinematic vorticity (Wm) is directly estimated from the RGN. Therefore, the kinematic vorticity of each porphyroclast is equal to its critical threshold.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Tang, Y., Wang, G. et al. Kinematics, strain pattern, and temperature environment of the Yeba shear zone and multistage structural evolution of the Yeba Group. Int J Earth Sci (Geol Rundsch) 111, 439–461 (2022). https://doi.org/10.1007/s00531-021-02123-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-021-02123-8

Keywords

Navigation