Skip to main content

Advertisement

Log in

Petrology, geochemistry, and source of the emplacement model of the Paleoproterozoic Tiébélé Granite Pluton, Burkina Faso (West-Africa): contribution to mineral exploration

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Tiébélé Granite Pluton (TGP) and the associated Pink Granite (PG), in southern Burkina Faso (West-Africa), are investigated based on petrology, geochemistry, and geochronology, to establish their relationship with volcanic-hosted mineral occurrences and their intrinsic capability to build up ore-forming metallic components. They can then be classified into either productive/fertile or nonproductive/barren intrusions with an approach using specific elements, such as Mn, Y, Rb, Zr, Sr, and Ta, as well as other discriminants including Fe2O3, Zn, and Sr/Y relative to SiO2. The TGP occurs as the main, single phase pluton, with the minor PG phase, which crosscuts the TGP. The CIPW normative Ab-An-Or and ternary K-Ca-Na indicate metaluminous (A/CNK ~ 1) “trondhjemite” and “granite” compositions. The TGP, with ΣREE ~ 89–165 ppm, is relatively enriched in LREE (La to Eu), 10–100 times chondrite compared to HREE (Gd to Lu), 3–20 times chondrite, with a weak negative Eu anomaly (Eu/Eu* ~ 0.85–1.02). This is approximately parallel to the average of the upper crust (ΣREE ~ 144 ppm) that shows a moderate negative Eu anomaly (Eu/Eu* ~ 0.74). This trondhjemitic to granitic pluton is an oxidized I-type granite related to partial melting of basalt and andesite from oxidized sources (based on magnetic susceptibilities), within an ensialic volcanic arc setting. In contrast to the PG, which is clearly nonproductive, based on the Y versus MnO discrimination, s the TGP seems fertile for porphyry-related Cu-Au deposits. U–Pb data on zircon yielded ages of 2147 ± 12 Ma and 2121 ± 47 Ma, respectively, for TGP and PG, whereas the rhyolite that hosts Zn-Cu-Pb Volcanogenic Massive Sulfide (VMS) occurrences occurs in an extensional setting dated at 2156 ± 9 Ma, suggesting emplacement of the TGP pluton ~ 10 My later, possibly not synvolcanic to the volcanic package.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

modified from Castaing et al. 2003) and location of the studied area; c Simplified Tiébélé geological map with the location of the Tiébélé Granite Pluton (TGP) and the Pink Granite (PG). 1-Foliation, 2- Fault, 3-Greenstone belt, 4-Tonalite trondhjemite and granodiorite, 5-Pink Granite (PG), 6-Tiébélé Granite Pluton (TGP), 7) Disseminated pyrite, 8) Pyrite and minor sphalerite, 9) > 0.5% Zn; 10 > 1% Zn; 11) 2–14% Zn. Coordinates in UTM WGS84-30P

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

modified by Christiansen and Keith (1996); e Th/Yb versus Ta /Yb diagram from Gorton and Schandl (2000), revised after Pearce (1983) is divided into three tectonic fields: oceanic arcs, active continental margins (ACM) and within-plate volcanic zones (WPVZ). The within-plate basalts (WPB) and mid-ocean ridge basalts (MORB) represent zones previously defined by Pearce (1983); f Th/Ta vs Yb diagram showing that both granite are likely from WPVZ. Legend. VAG—volcanic arc granites (I-type), WPG—within-plate granites (A-type), Syn-COLG—syn-collision granites (S-type), and ORG—ocean ridge granites

Fig. 9

Source is from mantle or eclogite/tholeiitic basalts composition. PAG-Paleoproterozoic Amphibole Granitoid, PBG-Paleoproterozoic Biotite granitoid (e.g., Lompo 2009)

Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abouchami W, Boher M, Michard A, Albarede F (1990) A major 2.1 Ga event of mafic magmatism in West Africa: an early stage of crustal accretion. J Geophys Res 95:17605–17629

    Google Scholar 

  • Ama-Salah I, Liegeois J-P, Pouclet A (1996) Evolution d’un arc insulaire océanique birimien précoce au Liptako nigerien (Sirba): géologie, géochronologie et géochimie. J Afr Earth Sci 22:235–254

    Google Scholar 

  • Anglo America (2011) Annual report, 15p

  • Augustin J, Gaboury D, Crevier M (2017) Structural and gold mineralizing evolution of the world-class orogenic Mana district, Burkina Faso: multiple mineralizing events over 150 million years. Ore Geol Rev 91:981–1012. https://doi.org/10.1016/j.oregeorev.2017.08.007

    Article  Google Scholar 

  • Baldwin JA, Pearce JA (1982) Discrimination of productive and nonproductive porphyritic intrusions in the Chilean Andes. Econ Geol 77:664–674

    Google Scholar 

  • Baratoux L, Metelka V, Naba S, Jessell MW, Grégoire M, Ganne J (2011) Juvenile Paleoproterozoic crust evolution during the Eburnean orogeny (∼2.2–2.0 Ga), western Burkina Faso. Precambr Res 191:18–45

    Google Scholar 

  • Barbarin B (1999) A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46:605–626

    Google Scholar 

  • Blevin P (2003) Metallogeny of granitic rocks. In: Magmas to mineralization. Blevin P et al. (ed), The Ishihara Symposium, pp 1–4

  • Blevin PL, Chappell BW (1992) The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia. Trans R Soc Edinburg Earth Sci 83:305–316

    Google Scholar 

  • Boher M, Abouchami W, Michard A, Albarède F, Arndt N (1992) Crustal growth in West Africa at 2.1 Ga. J Geophys Res 97:345–369

    Google Scholar 

  • Bossière G, Bonkoungou I, Peucat JJ, Pupin JP (1996) Origin and age of Palaeoproterozoic conglomerates and sandstones of the Tarkwaian Group in Burkina Faso, West Africa. Precambr Res 80:153–172

    Google Scholar 

  • Bouchez J-L, Delas C, Gleizes G, Nédélec A, Cuney M (1992) Submagmatic microfracture in granites. Geology 20:35–38

    Google Scholar 

  • Brown M, Solar GS (1998) Shear-zone systems and melts: feedback relations and self-organization in orogenic belts. J Struct Geol 20:211–227

    Google Scholar 

  • Carvalho PCS, Neiva AMR, Silva MMVG, Corfu F (2012) A unique sequential melting mechanism for the generation of anatectic granitic rocks from the Penafiel area, northern Portugal. Lithos 155:110–124

    Google Scholar 

  • Castaing C, Bila M, Milési JP, Thiéblemont D, Le Metour J, Egal E, Donzeau M, Guerrot C, Cocherie A, Chevremont P, Teygey I, Itard Y, Zida B, Ouédraogo I, Koté S, Kabore BE, Ouédraogo C, Ki JC, Zunino C (2003) Notice explicative de la carte géologique et minière du Burkina Faso à 1/1000 000. 3ème édition, BUMIGEB, 148 p.

  • Castro A (2013) Tonalite-granodiorite suites as cotectic systems: a review of experimental studies with applications to granitoid petrogenesis. Earth-Sci Rev 124:68–95

    Google Scholar 

  • Cerny P, Blevin PL, Cuney M, London D (2005) Granite-related ore deposits. Economic Geology, 100th Anniversary, pp 337–370

  • Chappell BW, White AJR (1974) Two contrasting granite types. Pac Geol 8:173–174

    Google Scholar 

  • Chappell BW, Wyborn D (2012) Origin of enclaves in S-type granites of the Lachlan Fold Belt. Lithos 154:235–247

    Google Scholar 

  • Chappell BW, White AJR, Wyborn D (1987) The importance of residual source material (restite) in granite petrogenesis. J Petrol 28:11–38

    Google Scholar 

  • Cheilletz A, Barbey P, Lama C, Pons J, Zimmermann JL, Dautel D (1994) Age de refroidissement de la croûte juvénile birimienne d’Afrique de l’Ouest, données U/Pb, Rb/Sr et K/Ar sur les formations à 2,1 Ga du SW-Niger. Compte Rendu de l’Academie des Sciences 319:435–442

    Google Scholar 

  • Chowdhury S (2002) The Sargipali sulfide deposit of Orissa, India: its atypical lead-high character and genesis. J Nepal Geol Congress Soc 27:11–24

    Google Scholar 

  • Chowdhury S, Lentz D (2011) Mineralogical and geochemical characteristics of scheelite-bearing skarns, and genetic relations between skarn mineralization and petrogenesis of the associated granitoid pluton at Sargipali, Sundergarh District, Eastern India. J Geochem Explor 108:39–61

    Google Scholar 

  • Christiansen EH, Keith JD (1996) Trace elements systematics in silicic magmas: a metallogenic perspective, in Wyman DA, ed, Trace Element Geochemistry of Volcanic Rocks: Application for Massive Sulphide Exploration: Geological Association of Canada, Short Course. Notes 12:115–151

    Google Scholar 

  • Clarke DB, Henry AS, White MA (1998) Exploding xenoliths and the absence of “elephant’s graveyards” in granite batholiths. J Struct Geol 20:1325–1343

    Google Scholar 

  • Clemens JD (1990) The granulite–granite connexion, In: Vielzeuf D, Dordrecht PV (Ed), Granulites and Crustal Differentiation. Kluwer Academic Publishers, pp 25–36

  • Clemens JD (1998) Observations on the origins and ascent mechanisms of granitic magmas. J Geol Soc Lond 155:843–851

    Google Scholar 

  • Clemens JD, Phillips GN (2014) Inferring a deep-crustal source terrane from a high-level granitic pluton: the Strathbogie Batholith, Australia. Contrib Miner Petrol 168:1–22

    Google Scholar 

  • Clemens JD, Stevens G (2012) What controls chemical variation in granitic magmas? Lithos 134–135:317–329

    Google Scholar 

  • Clemens JD, Watkins JM (2001) The fluid regime of high-temperature metamorphism during granitoid magma genesis. Contrib Miner Petrol 140:600–606

    Google Scholar 

  • Clemens JD, Stevens G, Farina F (2011) The enigmatic sources of I-type granites: the peritectic connexion. Lithos 126:174–181

    Google Scholar 

  • Collins WJ, Beams SD, White AJR, Chappell BW (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib Miner Petrol 80:189–200

    Google Scholar 

  • Dall’Agnol R, Ramo OT, Magalhaes MS, Macambira MJB (1999) Petrology of the anorogenic, oxidised Jamon and Musa granites, Amazonian Craton: implications for the genesis of Proterozoic A-type granites. Lithos 46:431–462

    Google Scholar 

  • Date AR, Hutchison D (1987) Determination of rare earth elements in geological samples by inductively coupled plasma source mass spectrometry. J Anal At Spectrom 2:269–276

    Google Scholar 

  • Davis DW, Hirdes W, Schaltegger U, Nunoo EA (1994) U-Pb age constraints on deposition and provenance of Birimian and gold-bearing Tarkwaian sediments in Ghana, West Africa. Precambr Res 67:89–107

    Google Scholar 

  • de Kock GS, Theveniaut H, Botha PMW, Gyapong W (2012) Timing the structural events in the Palaeoproterozoic Bolé-Nangodi belt terrane and adjacent Maluwe basin, West African craton, in central-west Ghana. J Afr Earth Sci 65:1–24

    Google Scholar 

  • Doumbia S, Pouclet A, Kouamelan AN, Peucat JJ, Vidal M, Delor C (1998) Petrogenesis of juvenile-type Birimian (Paleoproterozoic) granitoids in Central Côte D’Ivoire, West Africa: geochemistry and geochronology. Precambr Res 87:33–63

    Google Scholar 

  • Downey WS, Lentz DR (2006) Modelling of deep submarine pyroclastic volcanism: a review and new results. Geosci Can 33:5–24

    Google Scholar 

  • Drummond SM, Defant JM (1990) A model for trondhjemite-Tonalite-Dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J Geophys Res 95:21503–21521

    Google Scholar 

  • Egal E, Thiéblémont D, Lahondère D, Guerrot C, Costea CA, Iliescu D, Delor C, Goujou JC, Lafon JM, Tegyey M, Diaby S, Kolié P (2002) Late Eburnean granitization and tectonics along the western and northwestern margin of the Archean Kénéma-Man domain (Guinea, West Africa Craton). Precambr Res 117:57–84

    Google Scholar 

  • Eglinger A, Thébaud N, Zeh A, Davis J, Miller J, Parra-Avila LA, Loucks R, McCuaig C, Belousova E (2017) New insights into the crustal growth of the Paleoproterozoic margin of the Archean Kéména-Man domain, West African craton (Guinea): implications for gold mineral system. Precambr Res 292:258–289

    Google Scholar 

  • Feybesse JL, Billa M, Guerrot C, Duguey E, Lescuyer JL, Milesi JP, Bouchot V (2006) The Paleoproterozoic Ghanian province: Geodynamic model and ore controls, including regional stress modeling. Precambr Res 149:149–196

    Google Scholar 

  • Fitch TJ (1972) Plate convergence, transcurrent faults, and internal deformation adjacent to southeast Asia and the western Pacific. J Geophys Res 77:4432–4460

    Google Scholar 

  • Forster HJ, Tischendorf G, Trumbull RB (1997) An evaluation of the Rb vs (Y + Nb) discrimination diagram to infer tectonic setting of silicic igneous rocks. Lithos 40:261–293

    Google Scholar 

  • Frost BR, Barnes CG, Collins JW, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 11:2033–2048

    Google Scholar 

  • Gao P, Zhao ZF, Zheng YF (2014) Petrogenesis of Triassic granites from the Nanling Range in South China: implications for geochemical diversity in granites. Lithos 210–211:40–56

    Google Scholar 

  • Gao P, Zheng YF, Zhao ZF (2016a) Distinction between S-type and peraluminous I-type granites: zircon versus whole-rock geochemistry. Lithos 258–259:77–91

    Google Scholar 

  • Gao P, Zheng YF, Zhao ZF (2016b) Experimental melts from crustal rocks: A lithochemical constraint on granite petrogenesis. Lithos 266–267:133–157

    Google Scholar 

  • Gasquet D, Barbey P, Adou M, Paquette JL (2003) Structure, Sr–Nd isotope geochemistry and zircon U-Pb geochronology of the granitoids of the Dabakala area (Côte d’Ivoire): evidence for a 2.3 Ga crustal growth event in the Palaeoproterozoic of West Africa? Precambr Res 127:329–354

    Google Scholar 

  • Ghodsi MR, Boomeri M, Bagheri S, Lentz D, Ishiyama D (2016) Metallogeny and mineralization potential of the Bazman granitoids. SE Iran Resour Geol 66(3):286–302

    Google Scholar 

  • Gill JB (1981) Orogenic Andesites and Plate Tectonics. Springer, Berlin, p 390

  • Glazner AF, Bartley JM (2006) Is stoping a volumetrically significant pluton emplacement process? Geol Soc Am Bull 118:1185–1195

    Google Scholar 

  • Gorton M, Schandl ES (2000) From continents to island arcs: a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. Can Mineral 38:1065–1073

    Google Scholar 

  • Govett GJS, Atherton PR (1988) Applications of rock geochemistry to productive plutons and volcanic sequences. J Geochem Explor 30:223–242

    Google Scholar 

  • Gueye M, Siegesmund S, Wemmer K, Pawlig S, Drobe M, Nolte N, Layer P (2007) New evidence for an early Birimian evolution in the West African Craton: an example from the Kédougou-Kéniéba inlier, southeast Senegal. S Afr J Geol 110:511–534

    Google Scholar 

  • Guineberteau B, Vigneresse J-L, Bouchez J-L (1987) The Mortagne granite pluton (France) emplaced by pull-apart along a shear zone: Structural and gravimetric arguments and regional implication. Geol Soc Am Bull 99:763–770

    Google Scholar 

  • Hacker BR, Kelemen PB, Behn MD (2011) Differentiation of the continental crust by relamination. Earth Planetary Sci Lett 307:501–516

    Google Scholar 

  • Hall GEM, Plant JA (1992) Analytical errors in the determination of high field strength elements and their implications in tectonic interpretation studies. Chem Geol 95:141–156

    Google Scholar 

  • Hirdes W, Davis DW, Eisenlohr BN (1992) Reassessment of Proterozoic granitoid ages in Ghana on the basis of U/Pb zircon and monazite dating. Precambr Res 56:89–96

    Google Scholar 

  • Hirdes W, Davis DW, Ludtke G, Konan G (1996) Two generations of Birimian (Paleoproterozoic) volcanic belts in northeastern Côte d’Ivoire (West Africa): consequences for the ‘Birimian controversy.’ Precambr Res 80:173–191

    Google Scholar 

  • Hottin G, Ouédraogo OF (1975) Notice explicative de la carte géologique du Burkina au 1/1000000. Edit BRGM, Arch DGM, p 58

    Google Scholar 

  • Huang Y, Chubakov V, Mantovani F, Rudnick RL, McDonough WF (2013) A reference Earth model for the heat-producing elements and associated geoneutrino flux. Geochem Geophys Geosyst. https://doi.org/10.1002/ggge.20129

    Article  Google Scholar 

  • Hutton DHW (1988) Granite emplacement mechanisms and tectonic controls: inferences from deformation studies. Trans R Soc Edinburgh Earth Sci 79:245–255

    Google Scholar 

  • Ilboudo H, Sawadogo S, Naba S, Traoré AS, Lompo M (2013) Structure and emplacement of the granitic pluton of Tiébélé (Burkina Faso) and its implication in concentration anomalies of base metals (Zn-Pb-Cu) and gold (Au). Bulletin de l’Institut Scientifique de Rabat 35:63–75

    Google Scholar 

  • Ilboudo H, Lompo M, Wenmenga U, Napon S, Naba S, N’gom PM, (2017) Evidence of a volcanogenic massive sulfide (Zn-Pb-Cu-Ag) district within the Tiébélé Birimian (Paleoproterozoic) greenstone belts, southern Burkina Faso (West - Africa). J Afr Earth Sci 129:792–813

    Google Scholar 

  • Inverno CMC, Hutchison RW (2006) Petrochemical discrimination of evolved granitic intrusions associated with Mount Pleasant deposits, New Brunswick, Canada. Trans Inst Min Metall Bull 115:23–39

    Google Scholar 

  • Ishihara S (1977) The magnetite-series and ilmenite-series granitic rocks. Min Geol 27:293–305

    Google Scholar 

  • Ishihara S (1981) The granitoid series and mineralization. Economic Geology 75th Anniversary volume, pp 458–484

  • Ishihara S (2004) The redox state of granitoids relative to tectonic setting and earth history: the magnetite–ilmenite series 30 years later. Trans R Soc Edinburgh Earth Sci 95:23–33

    Google Scholar 

  • Ishihara S, Imai A (2014) Oxidized granitic magmas and porphyry copper mineralization, in Kumar S, Singh RN (ed), Modelling of Magmatic and Allied Processes, Society of Earth Scientists Series, doi: https://doi.org/10.1007/978-3-319-06471-010

  • Johannes W, Holtz F (1996) Petrogenesis and experimental petrology of granitic rocks. Springer, Berlin, p 335

    Google Scholar 

  • Kabore BE (2004) Datation d’une rhyolite porphyrique dans le secteur de Tiébélé (Nabenia). Rap BUMIGEB, p 8

  • Kagambèga N (2005) Typologie des granitoïdes Paléoprotérozoïques (Birimien) du Burkina Faso-Afrique de l’Ouest : Approche pétrologique dans la région de Pô. Thèse de 3ème cycle, UCAD, Dakar, Sénégal, p 200

  • Kagambèga N, Castaing C (2003) Notice explicative de la carte géologique du Burkina Faso à 1/200000ème Feuille NC-30-XXIII de Pô. Bureau des Mines et de la Géologie, Edit BRGM, p 52

    Google Scholar 

  • Kagambèga N, Lompo M, Naba S, Diallo PD, Debat P (2006) Caractère magmatique des granitoïdes rubanés de Pô (Burkina Faso-Afrique de l’Ouest): problème des migmatites Paléprotérozoïques. Annales de l’université de Ouagadougou, série C 004:1–24

    Google Scholar 

  • Kagambéga N, Lompo M, Diallo PD, Naba S (2004) Les granitoïdes Paléoprotérozoïques du Burkina Faso (Afrique de l’Ouest): Caractères pétrologiques. J Sci 4(3):81–96

    Google Scholar 

  • Koptev-Dvornikov VS, Rub MG (1964) Geochemical and metallogenic specialization of magmatic complexes (in Russian), in Metallogen Specializ Magmat Kompleksov: Nedra, Moskva, pp 7–24

  • Kouamelan AN, Delor C, Peucat JJ (1997) Geochronological evidence for reworking of Archean terrains during the early Proterozoic (2.1 Ga) in the western Côte d’Ivoire (Man rise-West African Craton). Precambr Res 86:177–199

    Google Scholar 

  • Kouamelan AN, Djro SC, Allialy ME, Paquette JL, Peucat JJ (2015) The oldest rock of Ivory Coast. J Afr Earth Sci 103:65–70

    Google Scholar 

  • Koukouvelas I, Pe-Piper G, Piper DJW (2002) The role of dextral transpressional faulting in the evolution of the early Carboniferous mafic-felsic plutonic and volcanic complex: Cobequid Highlands, Nova Scotia, Canada. Tectonophysics 348:219–246

    Google Scholar 

  • Lambert-Smith JS, Lawrence DM, Müller W, Treloar PJ (2016) Palaeotectonic setting of the south-eastern Kédougou-Kéniéba Inlier, West Africa: New insights from igneous trace element geochemistry and U-Pb zircon ages. Precambr Res 274:110–135

    Google Scholar 

  • Le Maitre RRW (2002) Igneous rocks: a classification and glossary of terms: recommendations of the international union of geological sciences. Cambridge University Press, Subcommission on the Systematic of Igneous Rocks, p 236

    Google Scholar 

  • Léger JM, Liégeois JP, Pouclet A, Vicat JP (1992) Occurrence of syntectonic alkali-pyroxene granites of Eburnean age (2.1 Ga) in Western Niger, In : Abstracts, 14ème Réunion Annuelle des Sciences de la Terre, Toulouse, France. Société Géologique de France, p 96

  • Leube A, Hirdes W, Mauer R, Kesse GO (1990) The Early Proterozoic Birimian Supergroup of Ghana and some aspects of its associated gold mineralization. Precambr Res 46:139–165

    Google Scholar 

  • Liégeois JP, Claessens W, Camara D, Klerkx J (1991) Short-lived Eburnean Orogeny in southern Mali. Geology, tectonics. U-Pb and Rb-Sr geochronology Precambr Res 50:111–136

    Google Scholar 

  • Lompo M (1991) Etude géologique et structurale des séries Birimiennes de la région de Kwademen, Burkina Faso, Afrique de L’Ouest (évolution et contrôle structural des minéralisations sulfurées et aurifères pendant l’éburnéen). Thèse Univ Clermond-Ferrand II, France, p 200

    Google Scholar 

  • Lompo M (2009) Geodynamic evolution of the 2.25–2.0 Ga Palaeoproterozoic magmatic rocks in the Man-Leo Shield of the West African Craton. A model of subsidence of an oceanic plateau. Geological Society London, Special Publication, pp 231–254

  • Lompo M (2010) Paleoproterozoic structural evolution of the Man-Leo Shield (West Africa). Key strucutures for vertical to transcurrent tectonics. J Afr Earth Sci 58:19–36

  • Lompo M, Bourges F, Debat P, Lespinasse P, Bouchez JL (1995) Mise en place d’un pluton granitique dans la croûte Birimienne fragile : fabrique magnétique du massif de Tenkodogo (Burkina Faso). Compte Rendu Academie des Sciences, Paris, 320, série Ia, pp 1211–1218

  • Loucks RR (2014) Distinctive composition of copper-ore forming arc magmas. Aust J Earth Sci 61:5–16

    Google Scholar 

  • Marcoux E, Belkabir A, Gibson H, Lentz D (2008) The Draa Sfar ore deposit (Jebilet, Morocco): an example of pyrrhotite dominant-polymetallic VHMS in a Hercynian sediment-dominant terranes. Ore Geol Rev 33(3–4):304–328

    Google Scholar 

  • Markwitz V, Hein KAA, Jessell MW, Miller JM (2016) Metallogenic portfolio of the West Africa Craton. Ore Geol Rev 78:558–563

    Google Scholar 

  • Marsh BD (1979) Island arc development: some observations, experiments and speculations. J Geol 87:687–713

    Google Scholar 

  • Marsh BD (1982) On the mechanisms of igneous diapirism, stoping and zone melting. Am J Sci 282:808–855

    Google Scholar 

  • Martin H (1986) Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology 14:753–756

    Google Scholar 

  • Masurel Q, Thébaud N, Miller J, Ulrich S (2017) The tectono-magmatic framework to gold mineralisation in the Sadiola-Yatela gold camp and implications for the paleotectonic setting of the Kédougou-Kénieba inlier, West Africa. Precambr Res 292:35–56

    Google Scholar 

  • McFarlane CRM (2015) A geochronological framework for sedimentation and Mesoproterozoic tectono-magmatic activity in lower Belt–Purcell rocks exposed west of Kimberley, British Columbia. Can J Earth Sci 52:444–465. https://doi.org/10.1139/cjes-2014-0215

  • McFarlane CRM, Luo Y (2012) U-Pb geochronology using 193 nm Excimer LA-ICP-MS optimized for in situ accessory mineral dating in thin sections. Geosci Can 39:158–172

    Google Scholar 

  • McFarlane HB, Thébaud N, Parra-Avila L, Armit R, Spencer C, Ganne J, Aillères L, Baratoux L, Betts PG, Jessell MW (2019) Onset of the supercontinent cycle: evidence for multiple oceanic arc accretion events in the Paleoproterozoic Sefwi Greenstone Belt of the West African Craton. Precambrian Research 335:105450. https://doi.org/10.1016/j.precamres.2019.105450

  • Middlemost EAK (1985) Magmas and Magmatic Rocks. An Introduction to Igneous Petrology. X+266pp, London, New York: Longman ISBN 0 582 30080 0

  • Milési JP, Ledru P, Feybesse JL, Dommanget A, Marcoux E (1992) Early Proterozoic ore deposits and tectonics of the Birimian orogenic belt, West Africa. Precambr Res 58:305–344

    Google Scholar 

  • Moyen J-F, Martin H (2012) Forty years of TTG research. Lithos 148:312–336

    Google Scholar 

  • Murphy JB (2006) Arc magmatism I: relationship between subduction and magma genesis. Geosci Can 33(4):145–167

    Google Scholar 

  • Murphy JB, Hynes AJ (1990) Tectonic control on the origin and orientation of igneous layering: an example from the Greendale Complex, Nova Scotia. Geology 18:403–406

    Google Scholar 

  • Naba S (2007) Propriétés magnétiques et caractères structuraux des granites du Burkina Faso oriental (Craton Ouest Africain, 2,2–2,0 Ga): implications géodynamique. Thèse Doctorat, Université Paul-Sabatier, Toulouse III:144p

    Google Scholar 

  • Naba S, Lompo M, Debat P, Bouchez JL, Béziat D (2004) Structure and emplacement model for late-orogenic Paleoproterozoic granitoids: the Tenkodogo-Yamba elongate pluton (Eastern Burkina Faso). J Afr Earth Sci 38:41–57

    Google Scholar 

  • O’Connor JT (1965) A classification for quartz-rich igneous rock based on feldspar ratios. U S Geol Surv Prof Pap 525B:B79–B84

    Google Scholar 

  • Ouattara G (1998) Structure du Batholite de Ferkessédougou (Secteur de Zuenoula, Côte d’Ivoire). Thèse Doctorat de l’Université d’Orléans, 291 p.

  • Ouattara G, Koffi BG (2014) Typologie des granitoïdes de la région de Tiassalé (Sud de la Côte d’Ivoire -Afrique de l’Ouest): Structurologie et Relations Génétiques. Afr Sci 10(2):258–276

    Google Scholar 

  • Parra-Avila Luis A, Kemp AIS, Fiorentini ML, Belousova E, Baratoux L, Block S, Jessell M, Bruguier O, Begg GC, Miller J, Davis J, McCuaig TC (2017) The geochronological evolution of the Paleoproterozoic Baoulé-Mossi domain of the Southern West African Craton. Precambr Res 300:1–27

    Google Scholar 

  • Parra-Avila Luis A, Baratoux L, Eglinger A, Fiorentini Marco L, Block S (2019) The Eburnean magmatic evolution across the Baoulé-Mossi domain: Geodynamic implications for the West African Craton. Precambr Res 332:105–392

    Google Scholar 

  • Patiño Douce AE (1999) What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geol Soc Spec Pub 168:55–75

    Google Scholar 

  • Pawlig S, Gueye M, Klischies R, Schwarz S, Wemmer K, Siegesmund S (2006) Geochemical and Sr-Nd isotopic data on the Birimian of the Kedougou-Kenieba Inlier (Eastern Senegal): implications on the Palaeoproterozoic evolution of the West African Craton. S Afr J Geol 109:411–427

    Google Scholar 

  • Pearce JA (1983) Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Norry MJ (ed) Continental Basalts and Mantle Xenoliths (Hawkesworth CJ. Shiva Press, Nantwich, UK, pp 230–249

    Google Scholar 

  • Pearce JA (1996) Sources and settings of granitic rocks. Episodes 19:120–125

    Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Miner Petrol 58:63–81

    Google Scholar 

  • Petersson A, Scherstén A, Kemp AIS, Kristinsdóttir B, Kalvig P, Anum S (2016) Zircon U–Pb–Hf evidence for subduction related crustal growth and reworking of Archaean crust within the Palaeoproterozoic Birimian terrane, West African Craton, SE Ghana. Precambr Res 275:286–309

    Google Scholar 

  • Pons J, Debat P, Oudin C (1991) Emplacement kinematics of the syntectonic Saraya granite (Senegal, West Africa). Bulletin de la Société Géologique de France 162(6):1075–1082

    Google Scholar 

  • Pons J, Oudin C, Valero J (1992) Kinematics of large syn-orogenic intrusions: example of the Lower Proterozoic Saraya batholith (Eastern Senegal). Geol Rundsch 81(2):473–486

    Google Scholar 

  • Pons J, Barbey P, Dupuis D, Leger JM (1995) Mechanism of pluton emplacement and structural evolution of a 2.1Ga juvenile continental crust: the Birimian of south-western Niger. Precambr Res 70:281–301

    Google Scholar 

  • Pouclet A, Vidal M, Delor C, Simeon Y, Alric G (1996) Le volcanisme birimien du nord-est de la Côte-d’Ivoire, mise en évidence de deux phases volcano-tectoniques distinctes dans l’évolution géodynamique du Paléo protérozoïque. Bulletin de la Société Géologique de France 167:529–541

    Google Scholar 

  • Puchelt H (1972) Barium. In “Handbook of Geochemistry", Wedepohl KH ed, Springer, Berlin II-4, 56, Sections B-O .

  • Riddle C, Vander Voet A, Doherty W (1988) Rock analysis using inductively coupled plasma mass spectrometry: a review. Geostand Newsl 12:203–234

    Google Scholar 

  • Roberts MP, Clemens JD (1993) Origin of high-potassium, calc-alkaline, I-type granitoids. Geology 21:825–828

    Google Scholar 

  • Rudnick RL (1992) Xenoliths-samples of the lower continental crust. See Fountain et al. 1992, pp 269–316

  • Rudnick RL, Gao S (2003) Composition of the continental crust. See Holland and Turekian 2003:1–64

    Google Scholar 

  • Rudnick RL, Gao S (2014) Composition of the continental crust. See Holland and Turekian 2014:1–51

    Google Scholar 

  • Rudnick RL, Presper T (1990) Geochemistry of intermediate- to high-pressure granulites. NATO Sci Ser C 311:523–550

    Google Scholar 

  • Ryerson FJ, Watson EB (1987) Rutile saturation in magmas: implication for Ti-Nb-Ta in Island-arc basalts. Earth Planet Sci Lett 86:225–239

    Google Scholar 

  • Sagatzky J (1954) La géologie et les ressources minières de la Haute –Volta méridionale. Bull Dir Fed Mines Geol AOF, N°13, Dakar, 230 p.

  • Sawadogo S (2017) Les plutons granitiques de la ceinture de Djibo au Nord du Burkina Faso (Afrique de l’Ouest): Mécanisme de mise en place et implication dans l’évolution géodynamique de la ceinture. Thèse Univ OIPJKZ, Burkina Faso, p 252

    Google Scholar 

  • Sawadogo S, Naba S, Ilboudo H, Traoré AS, Nakolendoussé S, Lompo M (2018) The Belahourou granite pluton (Djibo greenstone belt, Burkina Faso): emplacement mechanism and implication for gold mineralization along a shear zone. J Afr Earth Sci 148:59–68. https://doi.org/10.1016/j.jafrearsci.2018.04.009

    Article  Google Scholar 

  • Sawyer EW (1994) Melt segregation in the continental crust. Geology 22:1019–1022

    Google Scholar 

  • Shand SJ (1943) Eruptive Rocks. Their Genesis, Composition, Classification, and Their Relation to Ore Deposits with a Chapter on Meteorite. New York: John Wiley and Sons, 444 p.

  • Shaw DM, Reilly GA, Muysson JR, Pattenden GE, Campbell AF (1967) An estimate of the chemical composition of the Canadian Precambrian shield. Can J Earth Sci 4:829–853

    Google Scholar 

  • Shaw DM, Dostal J, Keays RR (1976) Additional estimates of continental surface Precambrian shield composition. Canada Geochim Cosmochim Acta 40:73–84

    Google Scholar 

  • Sillitoe RH (1996) Granites and metal deposits. Episodes 19:126–133

    Google Scholar 

  • Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Miner Petrol 148:635–661

    Google Scholar 

  • Slama J, Kosler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35

  • Sondo D (1986) Les minéralisations en or de Bouroum (NE du Burkina Faso) dans leur contexte géologique et structural: approche métallogénique. Thèse de 3ème cycle, Université Pierre et Marie Curie, Paris VI, France, 185 p.

  • Stemprok M (1979) Mineralized granites and their origin. Presented at an IGCP project 154, Nancy, France April 26–27, Episole, N°3

  • Stevens G, Clemens JD (1993) Fluid–absent melting and the roles of fluids in the lithosphere: a slanted summary? Chem Geol 108:1–17

    Google Scholar 

  • Stevens G, Villaros A, Moyen JF (2007) Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites. Geology 35:9–12

    Google Scholar 

  • Strong DF (1981) A model for granophile mineral deposits. Geosci Can 8(4):155–161

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society Special Publication, pp 313–345

  • Takahashi M, Aramaki S, Ishihara S (1980) Magnetite-series/ilmenite-series vs I-type S-type granitoids. Min Geol Spec Iss 8:13–28

    Google Scholar 

  • Tapsoba B, Lo CH, Jahn BM, Chung SL, Wenmenga U, Iizuka Y (2013) Chemical and Sr–Nd isotopic compositions and zircon U-Pb ages of the Birimian granitoids from NE Burkina Faso, West African Craton: implications on the geodynamic setting and crustal evolution. Precambr Res 224:364–396

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. An examination of the geochemical record preserved in sedimentary rocks, Blackwell, Oxford, p 312

    Google Scholar 

  • Taylor PN, Moorbath S, Leune A, Hirdes W (1988) Geochronology and crustal evolution of early Proterozoic granite-greenstone terrains in Ghana, West Africa. Abstr int Conf Workshop Geology of Ghana with special emphasis on gold, Oct 1988, Accra, pp 43–45

  • Traoré AS (2011) Mise en place des plutons de granites alcalins Paléoprotérozoïques du Burkina Faso (Afrique de l’Ouest). Université de Ouagadougou, Thèse de Doctorat, p 121

    Google Scholar 

  • Tshibubudze A, Hein KAA, Peters LFH, Woolfe AJ, McCuaig TC (2013) Oldest U–Pb crystallisation age for the West African Craton from the Oudalan-Gorouol Belt of Burkina Faso. S Afr J Geol 116:169–181

    Google Scholar 

  • Villaros A, Stevens G, Moyen JF, Buick IS (2009) The trace element compositions of S type granites: evidence for disequilibrium melting and accessory phase entrainment in the source. Contrib Miner Petrol 158:543–561

    Google Scholar 

  • Villaseca C, Barbero L, Rogers G (1998) Crustal origin of Hercynian peraluminous granitic batholiths of central Spain: petrological, geochemical and isotopic (Sr, Nd) constraints. Lithos 3:55–79

    Google Scholar 

  • Wane O, Liégeois JL, Thébaud N, Miller J, Metelka V, Jessell M (2018) The onset of the Eburnean collision with the Kenema-Man craton evidenced by plutonic and volcanosedimentary rock record of the Masssigui region, southern Mali. Precambr Res 305:444–478

    Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59(7):1217–1232

    Google Scholar 

  • Wenmenga U (1986) Pétrologie des ensembles lithologiques du Protérozoïque inférieur au NE de Ouagadougou (Burkina Faso-Craton Ouest Africain). Etude pétrographique, géochimique et géochronologique. Thèse Doctorat Université Clermont-Ferrand, 275 p.

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Miner Petrol 95:407–419

    Google Scholar 

  • White AJR, Chappell BW (1983) Granitoid types and their distribution in the Lachlan fold belt, southeast Australia. Geol Soc Am Mem 159:21–34

    Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Miner 95:185–187

    Google Scholar 

  • Witt WK, Davy R (1997) Geology and geochemistry of Archean granites in the Kalgoorlie region of the Eastern Goldfields, Western Australia: a syn-collisional tectonic setting? Precambr Res 83:133–183

    Google Scholar 

  • Wolfe W J (1977) Geochemical exploration of early Precambrian volcanogenic sulphide mineralization in Ben Nevis Township, District of Cochrane, Ontario. Ontario Geological Survey Study 19, 39 p.

  • Wyllie PJ (1988) Magma genesis, plate tectonics, and chemical differentiation of the Earth. Rev Geophys 26:370–404

    Google Scholar 

  • Xu L-L, Bi X-W, Hu R-Z, Tang Y-Y, Wang X-S, Huang M-L, Wang Y-J, Ma R, Liu G (2019) Contrasting whole-rock and mineral compositions of ore-bearing (Tongchang) and ore-barren (Shilicun) granitic plutons in SW China: implications for petrogenesis and ore genesis. Lithos 336–337:54–66

    Google Scholar 

  • Zhao ZF, Gao P, Zheng YF (2015) The source of Mesozoic granitoids in South China: integrated geochemical constraints from the Taoshan batholish in the Nanling Range. Chem Geol 395:11–26

    Google Scholar 

  • Zonou S (1987) Les formations leptyno-amphibolitiques et le complexe volcanique et volcano-sédimentaire du Protérozoïque inférieur de Bouroum-nord (Burkina Faso – Afrique de l’Ouest). Etude pétrographique, géochimique, approche pétrogénétique et évolution géodynamique.Thèse Doctorat de l’Université de Nancy, 294 p.

Download references

Acknowledgements

This paper is part of the first author’s (HI) MSc thesis research with further geochronology and lithogeochemistry. The authors thank Hervé Bassono for his help in collecting rock samples in the field. The first author greets the memory of the late Ada Abel, who was previously the field labor. The Bureau of Consultancy TEGECO Sarl is warmly thanked for logistical support. We are grateful to the “Centre Missionnaire d’Accueil Delphine Marie Desiré de Koumbissiri” for its assistance during the preparation of the paper. We thank Prof. Dave Lentz for facilitating samples analysis since the beginning and dating the Tiébélé granite and help editing various versions of this manuscript. Prof. McFarlane Christopher significantly contributed in the interpretation of datation. Lenka Baratoux, Ingo Braun and anonymous reviewers are thanked for their significant contribution in improving the manuscript

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Ilboudo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilboudo, H., Sawadogo, S., Kagambega, N. et al. Petrology, geochemistry, and source of the emplacement model of the Paleoproterozoic Tiébélé Granite Pluton, Burkina Faso (West-Africa): contribution to mineral exploration. Int J Earth Sci (Geol Rundsch) 110, 1753–1781 (2021). https://doi.org/10.1007/s00531-021-02039-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-021-02039-3

Keywords

Navigation