Skip to main content

Advertisement

Log in

Geochemical changes across a marginal marine Permo-Triassic boundary section on the Adria carbonate platform at Brsnina, Slovenia

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Brsnina Permian–Triassic nearshore marine sediments were deposited on the Adria carbonate platform in tropical latitudes at the western end of the Neotethys Ocean. Continuous channel samples across the boundary show no consistent change in element or element/Al ratios, except that most element/Al ratios increase in the top 0.5 m of the Permian strata. Though there are sporadic higher values of some element/element ratios, such as Ti/Zr, Th/Sc, Zr/Sc, Cr/Ni, Y/Ni, Co/Th, Cu/Zn, and Nb/Ta, La/Sc, the overall geochemistry indicates that the sediments were derived from dominantly silica-rich continental rather than silica-poor sources though with some more silica-poor inputs at times. Sporadic high Ti/Zr ratios indicate periods of increased aridity, but no overall increase across the boundary. Various geochemical redox proxies suggest mainly oxic depositional conditions, with episodes of anoxia, but with little systematic variation across the boundary. Geochemical proxies for productivity indicate little change up the section with values two orders of magnitude less than elsewhere. The lack of consistent element geochemical changes across the boundary accompanied by significant C, S, and other isotopic changes suggests that atmospheric and oceanic chemical variations drove the Permian–Triassic boundary environmental changes at least on the sabkha environments of the tropical Adria platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abshire ML, Romaniello SJ, Kuzminov AM, Cofrancesco J, Severmann S, Riedinger N (2020) Uranium isotopes as a proxy for primary depositional redox conditions in organic-rich marine systems. Earth Planet Sci Lett 529:115878

    Google Scholar 

  • Anderson RF, Winckler G (2005) Problems with paleoproductivity proxies. Paleoceanography 20:PA3012. https://doi.org/10.1029/2004PA001107

    Article  Google Scholar 

  • Armstrong-Altrin JS (2009) Provenance of sands from Cazones, Acapulco, and Bahía Kino beaches, Mexico. Revista Mexicana Ciencias Geológicas 26:764–782

    Google Scholar 

  • Arnesen E (2017) On the late permian thermohaline circulation: a study of the ocean circulation and its relation to the permian-triassic extinction. University of Oslo, M.Sc, p 102p

    Google Scholar 

  • Augland LE, Ryabov VV, Vernikovsky VA, Planke S, Polokov AG, Calegro S, Jerran DA, Svensen HH (2019) The main pulse of the Siberian Traps expanded in size and composition. Sci Rep 9:18723. https://doi.org/10.1038/s41598-019-54023-2

    Article  Google Scholar 

  • Bachmann O, Dungan MA, Lipman PW (2002) The Fish Canyon magma body San Juan volcanic field, Colorado: rejuvenation and eruption of an upper crustal batholith. J Petrol 43:1469–1503. https://doi.org/10.1093/petrology/43.8.1469

    Article  Google Scholar 

  • Bahlburg H, Dobrzinski N (2011) A review of the Chemical Index of Alteration (CIA) and its application to the study of Neoproterozoic glacial deposits and climate transitions. J Geol Soc London Mem 36:81–92

    Google Scholar 

  • Bains S, Norris R, Corfield R, Faul K (2000) Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback. Nature 407:171–174

    Google Scholar 

  • Baresel B, Bucher H, Brosse M, Cordey F, Guodun K, Schaltegger U (2017) Precise age for the Permian-Triassic boundary in South China from high-precision U-Pb geochronology and Bayesian age-depth modeling. Solid Earth 8:361–378

    Google Scholar 

  • Baud A (2005) Geochemical changes at the Permian–Triassic transition in Southern Alps and adjacent area: a review. Ann Univ Ferrara vol spec 2005:5–11

    Google Scholar 

  • Bhatia MR, Crook KAW (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contr Mineral Petrol 92:181–193

    Google Scholar 

  • Brandner R, Horacek M, Keim L, Scholger R (2009) The Pufels/Bulla road section: deciphering environmental changes across the Permian-Triassic boundary to the Olenekian by integrated litho-, magneto- and isotope stratigraphy. A field trip guide. Geo Alp 6:116–132

    Google Scholar 

  • Breymann V, Brumsack H, Emeis K (1992) Depositional and diagenetic behavior of barium in the Japan sea. Proceed Ocean Drill Prog Scie Results Japan Sea Legs 127(128):651–665. https://doi.org/10.2973/odp.proc.sr.127128-1.168.1992

    Article  Google Scholar 

  • Brookfield ME, Wolbach WS, Stebbins AG, Gilmour I, Roegge DR (2018) Organic carbon content and carbon isotope variations across the Permo-Triassic boundary in the Gartnerkofel-1 borehole, Carnic Alps. Austria Acta Geochimica 37(3):422–432

    Google Scholar 

  • Brookfield ME, Stebbins AG, Williams JC, Wolbach WS, Hannigan R, Bhat GM (2020a) Palaeoenvironments and elemental geochemistry across the marine Permo-Triassic boundary section, Guryul Ravine (Kashmir, India) and a comparison with other North Indian passive margin sections. Deposit Rec 6:75–116. https://doi.org/10.1002/dep2.96

    Article  Google Scholar 

  • Brookfield ME, Williams JC, Stebbins AG (2020b) Paleoenvironments and geochemistry across a continuous Permian-Triassic boundary section at Bűkk Mountains. Geoscience Frontiers, Hungary. https://doi.org/10.1016/j.gsf.2020.09.021

    Book  Google Scholar 

  • Busir S, Grad K, Ogorelec K, Ramovs A, Sribar A (1986) Stratigraphical, paleontological characteristics of Upper Permian beds in Slovenia, N.W. Yugoslavia Mem Soc Geol Italia 34:195–210

    Google Scholar 

  • Calvert SE, Pedersen TF (1993) Geochemistry of recent oxic and anoxic marine sediments: implications for the geological records. Mar Geol 11:67–88

    Google Scholar 

  • Calvert SE, Pedersen TF (2007) Element proxies for palaeoclimatic and palaeoceanographic variability. Dev Mar Geol 1:567–644

    Google Scholar 

  • Cao Y, Song H, Algeo TJ, Chu D, Du Y, Tian L, Wang Y, Tong J (2019) Intensified chemical weathering during the Permian-Triassic transition recorded in terrestrial and marine successions. Palaeogeog Palaeoclimatol Palaeoecol 519:166–177. https://doi.org/10.1016/j.palaeo.2018.06.012

    Article  Google Scholar 

  • Castillo S, Moreno T, Querol X, Alastuey A, Cuevas E, Herrmann L, Mounkaila M, Gibbons W (2008) Trace element variation in size-fractionated African desert dusts. J Arid Env 72:1034–1045

    Google Scholar 

  • Chamley H (1989) Clay sedimentology. Springer-Verlag, Berlin Heidelberg, p 623p

    Google Scholar 

  • Chen J, An Z, Head J (1999) Variation of Rb/Sr ratios in the loess-paleosol sequences of Central China during the last 130,000 years and their implications for monsoon paleoclimatology. Quat Res 51:215–219

    Google Scholar 

  • Chen B, Joachimski MM, Shen SZ, Lambert LL, Lai XL, Wang XD, Chen J, Yuan DX (2013) Permian ice volume and palaeoclimate history: oxygen isotope proxies revisited. Gondwana Res 24:77–99

    Google Scholar 

  • Chumakov NM, Zharkov MA (2003) Climate during the Permian–Triassic biosphere reorganization. Article 2. Climate of the late Permian and early Triassic: general inferences. Stratigr Geol Correl 11:361–375

    Google Scholar 

  • Cirilli S, Pirini-Radrizzani C, Ponton M, Radrizzani S (1998) Stratigraphical and palaeoenvironmental analysis of the Permian-Triassic transition in the Badia Valley (Southern Alps, Italy). Palaeogeog Palaeoclimatol Palaeoecol 138(1–4):85–113

    Google Scholar 

  • Clarkson MO, Kasemann SA, Wood R, Lenton TM, Daines SJ, Richoz S, Ohnemueller F, Meixner A, Poulton SW, Tipper ET (2015) Ocean acidification and the Permo-Triassic mass extinction. Science 348:229–232

    Google Scholar 

  • Cole DB, Zhang S, Planavsky NJ (2017) A new estimate of detrital redox-sensitive metal concentrations and variability in fluxes to marine sediments. Geochim Cosmoch Ac 216:337–353. https://doi.org/10.1016/j.gca.2017.08.004

    Article  Google Scholar 

  • Condie KC, Wronkiewicz DJ (1990) The Cr/Th ratio in Precambrian pelites from the Kaapvaal Craton as an index of craton evolution. Earth Planet Sc Lett 97:256–267

    Google Scholar 

  • Cox R, Lowe DR, Cullers RL (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim Cosmoch Ac 59:2919–2940

    Google Scholar 

  • Crasquin S, Perri M-C, Nicora A, Wever P (2008) Ostracods across the Permian-Triassic boundary in Western Tethys: The Bulla parastratotype (Southern Alps, Italy). Riv Ital Paleont Stratigr 114:233–262. https://doi.org/10.13130/2039-4942/5900

    Article  Google Scholar 

  • Demaiffe D, Wiszniewska J, Krzeminska E, Williams I (2013) Geochronology of NE Poland alkaline and carbonatite province. J Geol 121:91–104

    Google Scholar 

  • Dennison JM (1972) Statistical meaning in geologic field work. Geol Soc Am S 146:25–38

    Google Scholar 

  • Dickey JS Jr (1975) A hypothesis of origin for podiform chromite deposits. Geochim Cosmochim Ac 39:1061–1074

    Google Scholar 

  • Dolenec T, Ogorelec B, Pezdič J (1981) Upper Permian and Scythian beds in the Tržič area. Geologija 24(2):217–238 (In Serbo-Croat with English summary)

    Google Scholar 

  • Dolenec T, Buser S, Doleneć M (1999) The Permian-Triassic boundary in the Karavanke Mountains (Slovenia): Stable isotope variations in the boundary carbonate rocks of the Košutnik Creek and Brsnina section. Geologija 41:17–27

    Google Scholar 

  • Dolenec T, Lojen S, Ramovs A, Strauss HE, Joachimski MME (2001) The Permian–Triassic boundary in western Slovenia (Idrijca Valley section): magnetostratigraphy stable isotopes and elemental variations response of the oceanic/atmospheric systems to past global changes. Chem Geol 175:175–190

    Google Scholar 

  • Dolenec M, Ogorelec B, Lojen S (2003) Upper Carboniferous to lower Triassic Carbon isotopic signature in carbonate rocks of the Western Tethys (Slovenia). Geol Carpath 54:217–228

    Google Scholar 

  • Dolenec M, Dozet S, Lojen S (2006) Permo-Triassic boundary and Upper Permian as well as Lower Scythian beds in the southeastern borderland of the Ljubljana marsh, central Slovenia. RMZ-Mat Env 53(2):229–246 (in Serbo-Croat with English summary)

    Google Scholar 

  • Doleneć M (2005) The Permian-Triassic boundary in the Karavanke Mountains (Brsnina section, Slovenia): the ratio of Th/U as a possible indicator of changing redox conditions at the P/Tr transition. RMZ-Mat Envir 52(2):437–445

    Google Scholar 

  • Dominik J, Stanley DJ (1993) Boron, beryllium and sulfur in Holocene sediments and peats of the Nile delta, Egypt: their use as indicators of salinity and climate. Chem Geol 104:203–216

    Google Scholar 

  • Dydak SM (1991) The hydraulic sorting of Light and heavy minerals, heavy-mineral concentrations, and grain size. Dissert Coll William and Mary Virg Instit Marine Sci. https://doi.org/10.25773/v5-ddeg-0143

    Article  Google Scholar 

  • Dymond J, Suess E, Lyle M (1992) Barium in deep-sea sediment: a geochemical proxy for paleoproductivity. Paleoceanography 7:163–181

    Google Scholar 

  • Egorov LS (1970) Carbonatites and ultrabasic-alkaline rocks of the maimecha-kotui region. N Siberia Lithos 3(4):341–349

    Google Scholar 

  • Elderfield H, Greaves MJ (1982) The rare earth elements in seawater. Nature 296:214–219

    Google Scholar 

  • Erwin D (2006) Extinction: how life on earth nearly ended 250 million years ago. Princeton University Press, Princeton, p 320p

    Google Scholar 

  • Farabegoli E, Perri CM, Posenato R (2007) Environmental and biotic changes across the Permian-Triassic boundary in western Tethys: the Bulla parastratotype, Italy. Global Planet Change 55:109–135. https://doi.org/10.1016/j.gloplacha.2006.06.009

    Article  Google Scholar 

  • Fedo CM, Nesbitt HW, Young GM (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23:921–924

    Google Scholar 

  • Fio K, Spangenberg J, Vlahović I, Jasenka S, Velić I, Mrinjek E (2010) Stable isotope and trace element stratigraphy across the Permian-Triassic transition: a redefinition of the boundary in the Velebit Mountain, Croatia. Chemical Geology. Chem Geo 278:38–57. https://doi.org/10.1016/j.chemgeo.2010.09.001

    Article  Google Scholar 

  • Floyd PA (1989) Geochemical features of intraplate oceanic plateau basalts. Geol Soc Spec 42:215–230

    Google Scholar 

  • Fluteau F, Besse JB, B, Ramstein G, (2001) The Late Permian climate. What can be inferred from climate modeling concerning Pangea scenarios and Hercynian range altitude? Palaeogeog Palaeocl Palaeoecol 167:39–71

    Google Scholar 

  • Frederickson AF, Reynolds RC (1960) Geochemical method of determining paleosalinity. Clay Miner 8:203–213

    Google Scholar 

  • Furst MJ (1981) Boron in siliceous materials as a paleosalinity indicator. Geochim Cosmochim Ac 45:1–13

    Google Scholar 

  • Gallego-Torres D, Martinez-Ruis F, De Lange GJ, Jiminez-Espejo FJ, Ortega-Huertas M (2010) Trace-elemental derived paleoceanographic and paleoclimatic conditions for Pleistocene Mediterranean sapropels. Palaeog Palaeocl Palaeoecol 293:76–89

    Google Scholar 

  • Garver JI, Royce PR, Smick TA (1996) Chromium and nickel in shale of the Taconic Foreland: a case study for the provenance of fine-grained sediments with an ultramafic source. J Sedim Res 100:100–106

    Google Scholar 

  • Garzanti E, Ando S, Vezzoli G, Lustrino M, Boni M, Vermeesch P (2012) Petrology of the Namib Sand Sea: long-distance transport and compositional variability in the wind-displaced Orange Delta. Earth-Sci Rev 112:171–189

    Google Scholar 

  • Govin A, Holzwarth U, Heslop D, Keeling LF, Zabel M, Mulitza S, Collins JA, Chiessi CM (2012) Distribution of major elements in Atlantic surface sediments (36N-49S): imprint of terrigenous input and continental weathering. Geochem Geophys Geosy 13:Q01013. https://doi.org/10.1029/2011GC003785

    Article  Google Scholar 

  • Govindaraju K (1994) 1994 compilation of working values and sample descriptions for 383 geostandards. Geostandard Newslett 18(Supplement S1):1–158

    Google Scholar 

  • Grasby SE, Beauchamp B, Knies J (2016) Early Triassic productivity crises delayed recovery from world’s worst mass extinction. Geology 44:779–782

    Google Scholar 

  • Green TH (1995) Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chem Geol 120:347–359

    Google Scholar 

  • Griffin JJ, Windom H, Goldberg ED (1968) The distribution of clay minerals in the World Ocean. Deep-Sea Res 15:433–459

    Google Scholar 

  • Hallberg RO (1976) A geochemical method for investigation of paleoredox conditions in sediments. Ambio Spec Rep 4:139–147

    Google Scholar 

  • Hankel O (1992) Late Permian to early Triassic microfloral assemblages from the Maji Ya Chumvi Formation, Kenya. Rev Palaeobot Palvnol 72:129–147

    Google Scholar 

  • Harnois L (1988) The CIW index: a new chemical index of weathering. Sediment Geol 55:319–322

    Google Scholar 

  • Hayashi KL, Fujisawa H, Holland HD, Ohmoto H (1997) Geochemistry of approximately 1.9 Ga sedimentary rocks from northeastern Labrador. Canada Geochim Cosmochim Acta 61:4115–4137

    Google Scholar 

  • Hingston FJ (1964) Reactions between boron and clays. Aust J Soil Res 2:83–95

    Google Scholar 

  • Holser WT, Schönlaub H-P, Boeckelmann K, Magaritz M (1991) The Permian-Triassic of the Gartnerkofel-1 core (Carnic Alps, Austria): synthesis and conclusions. Abhandlungen Geologischen Bundesanstalt 45:213–232

    Google Scholar 

  • Ignatiev VI (1987) Late Permian Lakes of the Volga-Ural Anteclise. In: History of the Late Paleozoic and Early Mesozoic Lakes. Nauka, Leningrad. 140–148 (in Russian)

  • Jewuɬa K, Trela W, Fijałkowska-Mader A (2020) Sedimentary and pedogenic record of seasonal humidity during the Permian-Triassic transition on the SE margin of Central European Basin (Holy Cross Mountains, Poland). Palaeog Palaeoclimatol Palaeoecol. https://doi.org/10.1016/j.palaeo.2020.110154

    Article  Google Scholar 

  • Jones B, Manning DAC (1994) Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem Geol 111:111–129

    Google Scholar 

  • Kackstaetter UW (2014) SEDMIN-Microsoft ExcelTM spreadsheet for calculating fine-grained sedimentary rock mineralogy from bulk geochemical analysis. Cent Eur J Geosci 6:170–181

    Google Scholar 

  • Kelemen PB, Hanghøj K, Greene AR (2003) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise Geochem 3:60p

    Google Scholar 

  • Kemp RA, Trueman CN (2003) Rare earth elements in Solnhofen biogenic apatite: geochemical clues to the palaeoenvironment. Sediment Geol 155:109–127

    Google Scholar 

  • Kenig F (2011) Distribution of organic matter in the transgressive and regressive Holocene sabkha sediments of Abu Dhabi, United Arab Emirates. Int As Sed Spec 43:277–298

    Google Scholar 

  • Kiehl JT, Shields CA (2005) Climate simulation of the latest Permian: Implications for mass extinction. Geology 33:757–760

    Google Scholar 

  • Klein P (1991) The Permian–Triassic of the Gartnerkofel-1 core (Carnic alps, Austria): geochemistry of common and trace elements I—ICP, AAS and LECO. Abhandlungen Geol Bundesanstalt 45:213–232

    Google Scholar 

  • Kraus S, Brandner R, Heubeck C, Kozur H, Struck U, Korte C (2013) Carbon isotope signatures of latest Permian marine successions of the Southern Alps suggest a continental runoff pulse enriched in land plant material. Fossil Record 16:97–109

    Google Scholar 

  • Liguori BTP, De Almeida MG, De Rezende CE (2016) Barium and its importance as an indicator of (paleo)productivity. Ann Br Acad Sci 88(4):2093–2103

    Google Scholar 

  • Liu XM, Hardisty DS., Lyons TW, Swart PK (2015) Evaluating the integrity of the Ce anomaly as a paleoredox tracer using modern marine carbonates. Am Geophys Union, Fall Meeting 2015, abstract # PP31B-2253

  • Mackenzie JA (1981) Holocene dolomitization of calcium carbonate sediments from the coastal sabkhas of Abu Dhabi, U.A.E: a stable isotope study. J Geol 89(2):185–198

    Google Scholar 

  • Magaritz M, Holser WT (1991) The Permian-Triassic of the Gartnerkofel-1 core (Carnic Alps, Austria): carbon and oxygen isotope variations. Abhandlungen Geol Bundesanstalt 45:149–163

    Google Scholar 

  • Marriott CS, Henderson GM, Crompton R, Staubwasser M, Shaw S (2004) Effect of mineralogy, salinity, and temperature on Li/Ca and Li isotope composition of calcium carbonate. Chem Geol 212:5–15

    Google Scholar 

  • Martin KD (2004) A re-evaluation of the relationship between trace fossils and anoxia. Geol Soc Spec 228:141–156

    Google Scholar 

  • McLennan SM, Hemmings S, McDaniel DK, Hanson GN (1993) Geochemical approaches to sedimentation, provenance and tectonics. Geol Soc Am Spec 285:21–40

    Google Scholar 

  • Moreno T, Querol X, Castillo S, Alastuey A, Cuevas E, Herrmann L, Mounkaila M, Elvira J, Gibbons W (2006) Geochemical variations in aeolian mineral particles from the Sahara-Sahel dust corridor. Chemosphere 65:261–270

    Google Scholar 

  • Morford JL, Emerson S (1999) The geochemistry of redox sensitive trace metals in sediments. Geochim Cosmochim Ac 63:1735–1750

    Google Scholar 

  • Murray JW, Lee BS, Bullister J, Luther GW (1999) The suboxic zone of the Black Sea. In: Beşiktepe, S.T., Ünlüata, Ü., Bologa, A.S. (Eds.), Environmental Degradation of the Black Sea: Challenges and Remedies. NATO Science Series (2. Environmental Security), Springer, Dordrecht 56 75–91

  • Muttoni G, Kent DV (2019) Adria as promontory of Africa and its conceptual role in the Tethys twist and Pangea B to Pangea A transformation in the Permian. Riv Ital Paleont Stratigr 125(1):249–269

    Google Scholar 

  • Nesbitt HW, Markovics G (1997) Weathering of granodioritic crust, long term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments. Geochim Cosmochim Acta 61:1653–1670

    Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717

    Google Scholar 

  • Nesbitt HW, Fedo CM, Young GM (1997) Quartz and feldspar stability, steady and non-steady state weathering, and petrogenesis of siliciclastic sands and muds. J Geol 105:173–191

    Google Scholar 

  • Neveling J, Gastaldo R, Kamo S, Geissman J, Looy C, Bamford M (2016) A Review of stratigraphic, geochemical, and paleontologic data of the terrestrial end-Permian record in the Karoo Basin, South Africa. In: Linol, B. and de Wit, M.J. (Eds.): Origin and Evolution of the Cape Mountains and Karoo Basin. Springer International, Berlin https://doi.org/10.1007/978-3-319-40859-0_15

  • Nicholls GD, Loring DH (1960) Some chemical data on British Carboniferous sediments and their relationship to the clay mineralogy of these rocks. Mineral Mag 4:196–207

    Google Scholar 

  • Parker RL, Fleischer M (1968) Geochemistry of niobium and tantalum. US Geol Surv Prof Paper 612:43

    Google Scholar 

  • Parrish JT (1993) Climate of the Supercontinent Pangea. J Geol 101:215–233

    Google Scholar 

  • Parrish JT, Peterson F (1988) Wind directions predicted from global circulation models and wind directions determined from eolian sandstones of the western United States—A comparison. Sediment Geol 56:261–282

    Google Scholar 

  • Pfänder JA, Jung S, Münker C, Stracke A, Mezger K (2012) A possible high Nb/Ta reservoir in the continental lithospheric mantle and consequences on the global Nb budget—evidence from continental basalts from Central Germany. Geochim Cosmochim Acta 77:232–251

    Google Scholar 

  • Piper DZ, Calvert SE (2011) Holocene and late glacial palaeoceanography and palaeolimnology of the Black Sea: changing provenance and basin hydrography over the past 25,000 years. Geochim Cosmochim Ac 75:5597–5624

    Google Scholar 

  • Placer L (2008) Principles of the tectonic subdivision of Slovenia. Geologija 51:205–217 (in Slovenian)

    Google Scholar 

  • Plank T (2005) Constraints from Thorium/Lanthanum on sediment recycling at subduction zones and the evolution of the continents. J Petrol 46(5):921–944. https://doi.org/10.1093/petrology/egi005

    Article  Google Scholar 

  • Preto N, Kustatscher E, Wignall PB (2010) Triassic climates—State of the art and perspectives. Palaeogeog Palaeocl Palaeoecol 290:1–10

    Google Scholar 

  • Ramovš A, 1986. Marine development of the uppermost Žažar beds and the lowermost Sthian beds. Permian and Permian–Triassic boundary in the South Alpine segment of the Western Tethys. IGCP Project 203, Excursion Guidebook 39–42

  • Rampino MR, Prokoph A, Adler A (2000) Tempo of the end-Permian event: high-resolution cyclostratigraphy at the Permian-Triassic boundary. Geology 28(7):643–646. https://doi.org/10.1130/0091-7613(2000)28%3c643:TOTEEH%3e2.0.CO;2

    Article  Google Scholar 

  • Reitz A, Pfeifer K, de Lange GJ, Klump J (2004) Biogenic barium and the detrital Ba/Al ratio: a comparison of their direct and indirect determination. Mar Geol 204:289–300

    Google Scholar 

  • Rimmer SM (2004) Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin (USA). Chem Geol 206:373–391

    Google Scholar 

  • Roser B, Kimura J-I, Sifeta K (2003) Tantalum and niobium contamination from tungsten carbide ring mills: much ado about nothing. Geosci Rep Shimane Univ 22:107–110

    Google Scholar 

  • Roy PD, Arce JL, Lozano R, Jonathan MP, Centeno E, Lozano S (2012) Geochemistry of late quaternary tephra-sediment sequence from northeastern basin of Mexico (Mexico): implications to tephrochronology, chemical weathering and provenance. Rev Mex Cienc Geol 29(1):24–38

    Google Scholar 

  • Sal'menova KZ, Koshkin VY (1990) Stratigraphy and Flora of the Late Paleozoic in the North Balkhash Area. Almaty, Navka. 160p (in Russian)

  • Schmid SM, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine–Carpathian–Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101:139–183

    Google Scholar 

  • Schock HH (1975) Geochemistry and mineralogy. In: Horovitz CT (ed) Scandium: its occurrence, chemistry, physics, metallurgy, biology and technology. Academic Press, London, pp 50–65

    Google Scholar 

  • Schoepfer SD, Shen J, Wei HY, Tyson RV, Ingall E, Algeo TJ (2015) TOC, organic P, and biogenic Ba accumulation rates as proxies for marine primary productivity and export flux. Earth-Sci Rev 149:23–52

    Google Scholar 

  • Schönlaub HP (1991) The Permian-Triassic of the Gartnerkofel-1 core (Carnic Alps, Austria): conodont biostratigraphy. Abh Geologischen Bundesanstalt 45:79–98

    Google Scholar 

  • Scotese CR, Schettino A (2017) Late Permian – Early Jurassic Paleogeography of Western Tethys and the World. In: Soto JI, Flinch J, Tari G (eds) Permo-triassic salt provinces of europe, north africa and the atlantic margins. Elsevier, Amsterdam, pp 57–95

    Google Scholar 

  • Shellnutt JG, Bhat GM, Broofield ME, Jahn BM (2011) No link between the Panjal Traps (Kashmir) and the Late Permian mass extinctions. Geophys Res Lett 38:L19308

    Google Scholar 

  • Shen J, Schoepfer SD, Feng Q, Zhou L, Yu J, Song H, Wei H, Algeo T (2015) Marine productivity changes during the end-Permian crisis and Early Triassic recovery. Earth-Sci Reviews 149:136–162

    Google Scholar 

  • Sun Y, Joachimski MM, Wignall PB, Chan C, Chen Y, Jiang H, Wang L, Lai X (2012) Lethally hot temperatures during the Early Triassic greenhouse. Science 338:366–370

    Google Scholar 

  • Sun H, Xiao Y, Gao Y, Zhang G, Casey JF, Shen Y (2018) Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian-Triassic boundary. Proceed Nat Acad Sci USA 115(15):3782–3787. https://doi.org/10.1073/pnas.1711862115

    Article  Google Scholar 

  • Sun Y, Zulla M, Joachimski M, Bond D, Wignall P, Zhang Z, Zhang M (2019) Ammonium ocean following the end-Permian mass extinction. Earth Planet Sci Lett 518:211–222. https://doi.org/10.1016/j.epsl.2019.04.036

    Article  Google Scholar 

  • Swart PK, Oehlert AM, Mackenzie GJ, Eberli GP, Reijmer JJG (2014) The fertilization of the bahamas by saharan dust: a trigger for carbonate precipitation? Geology 42(8):671–674. https://doi.org/10.1130/G35744.1

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The Continental Crust. Its Composition and Evolution, Blackwell, Oxford

    Google Scholar 

  • Tostevin R, Shields GA, Tarbuck GM, He T, Clarkson MO, Wood RA (2016) Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chem Geol 438:146–162. https://doi.org/10.1016/j.chemgeo.2016.06.027

    Article  Google Scholar 

  • Tribovillard N, Algeo TJ, Lyons TW, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geo 232:12–32

    Google Scholar 

  • van Geen A, Luoma SN, Fuller CC, Anima R, Clifton HE, Trumbore S (1992) Evidence from Cd/Ca ratios in foraminifera for greater upwelling off California 4000 years ago. Nature 358:54–56

    Google Scholar 

  • van Soelen EE, Twitchett RJ, Kürschner WM (2018) Salinity changes and anoxia resulting from enhanced run-off during the late Permian global warming and mass extinction event. Climate Past 14:441–453. https://doi.org/10.5194/cp-14-441-2018

    Article  Google Scholar 

  • Veres DS (2002) A comparative study between loss on ignition and total carbon analysis on minerogenic sediments. Stud Univ Babeṣ-Bolyal Geol 57:171–182

    Google Scholar 

  • Wahrenberger CM (1997) Some aspects of the chemistry of volcanic gases. Dissertation. Swiss Federal Institute of Technology, Zurich. 249

  • Walker CT (1968) Evaluation of boron as a paleosalinity indicator and its application to offshore prospects. Am Ass Pet Geol B 52:751–766

    Google Scholar 

  • Wei G, Liu Y, Li X, Shao L, Liang X (2003) Climatic impact on Al, K, Sc and Ti in marine sediments: evidence from ODP Site 1144, South China Sea. Geochem J 37:593–602

    Google Scholar 

  • Wignall PB (1994) Black Shales. Oxford Monographs in Geology and Geophysics. Oxford University Press, Oxford. 127

  • Wignall PB (2015) The worst of times: 80 million years of extinction: how life on earth survived eighty million years of extinctions. Princeton University Press, Princeton, p 224p

    Google Scholar 

  • Wignall PB, Myers KJ (1988) Interpreting benthic oxygen levels in mudrocks—a new approach. Geology 16:452–455

    Google Scholar 

  • Wignall PB, Twitchett RJ (1996) Oceanic anoxia and the end Permian mass extinction. Science 272:1155–1158

    Google Scholar 

  • Wilde P, Lyons TW, Quinby-Hunt MS (2004) Organic carbon proxies in black shales: molybdenum. Chem Geol 206:167–176

    Google Scholar 

  • Wronkiewicz DJ, Condie KC (1989) Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: evidence for a 3.0-Ga-old continental craton. Geochim Cosmochim Ac 53:1537–1549

    Google Scholar 

  • Xu F, Li A, Li T, Xu K, Chen S, Qiu L, Cao Y (2011) Rare earth element geochemistry in the inner shelf of the East China Sea and its implication for sediment provenances. J Rare Earth 29:702–709

    Google Scholar 

  • Yamasaki T (2018) Contamination from mortars and mills during laboratory crushing and pulverizing. Bull Geol Surv Japan 69(3):201–210

    Google Scholar 

  • Yemane K, Kelts K (1990) A short review of paleoenvironments for Lower Beaufort (Upper Permian) Karoo sequences from southern to central Africa: a major Gondwana Lacustrine episode. J Afr Earth Sci 10:169–185

    Google Scholar 

Download references

Acknowledgements

We greatly appreciate the hospitality and help of Alenka Jamnic and family in Slovenia during the field work, and gratefully acknowledge the support and advice of Robyn Hannigan. Field work and geochemical analyses at the Environmental Analytical Facility at University of Massachusetts at Boston was funded by NSF Award # 09-42371; DBI: MRI-RI2; to Robyn Hannigan and Alan Christian. Alan Stebbins also gratefully acknowledges support by the National Science Foundation Graduate Research Fellowship (DGE-1349 1356104) and the UMass Boston Chancellor’s Distinguished Doctoral Fellowship. Last, we thank Guido Meinhold for his careful review and editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Brookfield.

Supplementary Information

Appendix

Appendix

See Table

Table 1 Brsnina sample description

1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, J.C., Stebbins, A. & Brookfield, M.E. Geochemical changes across a marginal marine Permo-Triassic boundary section on the Adria carbonate platform at Brsnina, Slovenia. Int J Earth Sci (Geol Rundsch) 110, 923–942 (2021). https://doi.org/10.1007/s00531-021-01999-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-021-01999-w

Keywords

Navigation