Skip to main content

Advertisement

Log in

Genesis and metallogenetic setting of the polymetallic barite-sulphide deposit, Bobija, Western Serbia

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The polymetallic Bobija ore deposit in Western Serbia is located at the southwestern edge of the Jadar Block, a distal part of the passive continental margin of Adria. The sulphide mineralization consists of fine-grained pyrite, sphalerite, galena and tetrahedrite, and is associated with abundant barite. The deposit is stratabound and hosted by a Triassic sedimentary sequence. A feeder zone is present in the immediate footwall of the ore mineralization. The volcano-sedimentary succession in the uppermost strata comprises coherent lavas and volcaniclastic sediments. They were investigated for the bulk rock composition and the zircons were subjected to U–Pb dating. Analysed zircons deliver an upper age limit of 243.1 ± 1.3 Ma. Sphalerite from the sulphide mineralization was investigated for its trace element content and pyrite and barite for their sulphur isotope composition. Sphalerite geothermometry indicates ore-bearing fluid temperatures of 152–179 °C. A negative δ34S value of − 6.3‰ in pyrite indicates a sulphur source from a partially reduced reservoir. The new data confirm a previously inferred Triassic age for the Bobija deposit and underline the importance of the prevalent rift regime for ore formation. We propose that the sediment-hosted Bobija deposit should be classified as a clastic-dominated, rift-related Pb–Zn deposit. Given the tectonic setting and temperature constraints, the hydrothermal processes are comparable to deposits classically referred to as sedimentary exhalative (SEDEX). This is in a good agreement with similar deposits occurring in Central Bosnia. These similarities reveal links between ore deposit formation and geodynamic evolution in the Balkan Peninsula, underlining the common geological evolution of the more external zones of the Dinarides and the Jadar Block.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allègre CJ, Treuil M, Minster J-F, Minster B, Albarède F (1977) Systematic use of trace element in igneous process. Contrib Miner Petrol 60:57–75. https://doi.org/10.1007/BF00372851

    Article  Google Scholar 

  • Ansorge J, Blundell D, Mueller S (1993) Europe’s lithosphere-seismic structure. In: Blundell D, Freeman R, Mueller S (eds) A continent revealed: the European geotraverse. Cambridge University Press, pp 33–69

  • Ayuso RA, Kelley KD, Leach DL, Young LE, Slack JF et al (2004) Origin of the red dog Zn–Pb–Ag deposits, Brooks Range, Alaska: evidence from regional Pb and Sr isotope sources. Econ Geol 99:1533–1553

    Article  Google Scholar 

  • Bernasconi SM, Meier I, Wohlwend S, Brack P, Hochuli PA, Bläsi H, Wortmann UG, Ramseyer K (2017) An evaporite-based high-resolution sulfur isotope record of Late Permian and Triassic seawater sulfate. Geochim Cosmochim Acta 204:331–349

    Article  Google Scholar 

  • Berza T, Constantinescu E, Vlad S-N (1998) Upper Cretaceous magmatic series and associated mineralisation in the Carpathian–Balkan Orogen. Resour Geol 48:291–306

    Article  Google Scholar 

  • Briqueu L, Bougault H, Joron JL (1984) Quantification of Nb, Ta, Ti and V anomalies in magmas associated with subduction zones: petrogenetic implications. Earth Planet Sci Lett 68:297–308. https://doi.org/10.1016/0012-821X(84)90161-4

    Article  Google Scholar 

  • Cook NJ, Ciobanu CL, Pring A, Skinner W, Shimizu M et al (2009) Trace and minor elements in sphalerite: a LA-ICPMS study. Geochim Cosmochim Acta 73:4761–4791

    Article  Google Scholar 

  • Cvetković V et al (2016) Geology of South-Eastern Europe. In: Papić O (ed) Mineral and thermal waters of Southeastern Europe. Springer, Berlin, pp 1–29

    Google Scholar 

  • Dimitrijević MD (1992) Geological atlas of Serbia, 1: 2.000.000. Republic foundation of geological investigations and Geological Survey Gemini

  • Emsbo P (2009) Geologic criteria for the assessment of sedimentary exhalative (sedex) Zn–Pb–Ag deposits. US Geological Survey open-file report, 1209, 21

  • Emsbo P, Johnson CA (2004) Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins—comment. Geology 32:e64

    Article  Google Scholar 

  • Emsbo P, Seal RR, Breit GN, Diehl SF, Shah AK (2016) Sedimentary exhalative (sedex) zinc-lead-silver deposit model. U.S. Geological Survey scientific investigations report, 2010-5070-N

  • Farquhar J, Wu N, Canfield DE, Oduro H (2010) Connections between sulfur cycle evolution, sulfur isotopes, sediments, and base metal sulfide deposits. Econ Geol 105:509–533

    Article  Google Scholar 

  • Filipović I, Jovanović D, Sudar M, Pelikán P, Kovács S et al (2003) Comparison of the Variscan-Early Alpine evolution of the Jadar Block (NW Serbia) and “Bükkium”(NE Hungary) terranes; some paleogeographic implications. Slovak Geol Mag 9:3–21

    Google Scholar 

  • Frenzel M, Hirsch T, Gutzmer J (2016) Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type—a meta-analysis. Ore Geol Rev 76:52–78

    Article  Google Scholar 

  • Gardner HD, Hutcheon I (1985) Geochemistry, mineralogy, and geology of the Jason Pb–Zn deposits, Macmillan Pass, Yukon, Canada. Econ Geol 80:1257–1276

    Article  Google Scholar 

  • Gawlick H-J, Goričan Š, Missoni S, Lein R (2012) Late Anisian platform drowning and radiolarite deposition as a consequence of the opening of the Neotethys ocean (High Karst nappe, Montenegro). Bulletin de la Société géologique de France 183:349–358

    Article  Google Scholar 

  • Halbach P, Pracejus B, Maerten A (1993) Geology and mineralogy of massive sulfide ores from the central Okinawa Trough, Japan. Econ Geol 88:2210–2225

    Article  Google Scholar 

  • Haas J, Kovács S, Krystyn L, Lein R (1995) Significance of late Permian-Triassic facies zones in terrane reconstructions in the Alpine-North Pannonian domain. Tectonophysics 242:19–40

    Article  Google Scholar 

  • Heinrich CA, Neubauer F (2002) Cu–Au–Pb–Zn–Ag metallogeny of the Alpine–Balkan–Carpathian–Dinaride geodynamic province. Miner Depos 37:533–540

    Article  Google Scholar 

  • Hoefs J (1997) Stable isotope geochemistry, vol 201. Springer, Berlin

    Book  Google Scholar 

  • Huston DL, Pehrsson S, Eglington BM, Zaw K (2010) The geology and metallogeny of volcanic-hosted massive sulfide deposits: variations through geologic time and with tectonic setting. Econ Geol 105:571–591. https://doi.org/10.2113/gsecongeo.105.3.571

    Article  Google Scholar 

  • Janković S (1987) Genetic types and major Triassic deposits of the Dinarides, Yugoslavia. Mineral deposits on the TEMB between the Alps and Pamirs. IGCP project, vol 169, pp 11–33

  • Janković S (1990) The ore deposits of Serbia (Yugoslavia): Regional metallogenic settings, environments of deposition and types. Republic Social Fund for Geological Investigations and Faculty of Mining and Geology, Department for Economic Geology, Belgrade, vol 159, pp 1–760

  • Janković S (1997) The Carpatho-Balkanides and adjacent area: a sector of the Tethyan Eurasian metallogenic belt. Miner Depos 32:426–433

    Article  Google Scholar 

  • Jelenković R, Kostić A, Životić D, Ercegovac M (2008) Mineral resources of Serbia. Geol Carpatica 59(4):345–361

    Google Scholar 

  • Karamata S (2000) Mineralization related to the Triassic rifting in the Borovic-Vareš-Čevljanovići-Kalinovik zone (Bosnia). Acta Geol Hung Bp 43:15–23

    Google Scholar 

  • Karamata S, Knežević V, Cvetković V (2000) Petrology of the Triassic basaltoid rocks of Vareš (Central Bosnia). Acta Geol Hung 43:1–14

    Google Scholar 

  • Kelley KD, Dumoulin JA, Jennings S (2004a) The Anarraaq Zn–Pb–Ag and barite deposit, northern Alaska: evidence for replacement of carbonate by barite and sulfides. Econ Geol 99:1577–1591

    Article  Google Scholar 

  • Kelley KD, Leach DL, Johnson CA, Clark JL, Fayek M et al (2004b) Textural, compositional, and sulfur isotope variations of sulfide minerals in the Red Dog Zn–Pb–Ag deposits, Brooks Range, Alaska: implications for ore formation. Econ Geol 99:1509–1532

    Article  Google Scholar 

  • Kiss G, Molnár F, Palinkaš AL, Kovács S, Horvatović H (2012) Correlation of Triassic advanced rifting-related Neotethyan submarine basaltic volcanism of the Darnó Unit (NE-Hungary) with some Dinaridic and Hellenidic occurrences on the basis of volcanological, fluid-rock interaction, and geochemical characteristics. Int J Earth Sci 101:1503–1521

    Article  Google Scholar 

  • Kiss G, Molnár F, Palinkaš AL (2016a) Hydrothermal processes related to Triassic and Jurassic submarine basaltic complexes in northeastern Hungary and in the Dinarides and Hellenides. Geol Croat 69:39–64

    Article  Google Scholar 

  • Kiss G, Oláh E, Zaccarini F, Szakáll S (2016b) Neotethyan rifting-related ore occurrences: study of an accretionary mélange complex (Darnó Unit, NE Hungary). Geol Carpath 67:105–115

    Article  Google Scholar 

  • Knežević V, Cvetković V (2000) Triassic rifting magmatism of the Dinarides. In: Karamata S, Janković S (eds) Proceedings of the international symposium “Geology and Metallogeny of the Dinarides and the Vardar zone”. Academy of Science and Arts of the Republic of Srpska, Collections and monographs, Banja Luka - Serbian Sarajevo, vol 1, pp 149–160

  • Large RR (1992) Australian volcanic-hosted massive sulfide deposits; features, styles, and genetic models. Econ Geol 87:471–510. https://doi.org/10.2113/gsecongeo.87.3.471

    Article  Google Scholar 

  • Large RR, Bull SW, McGoldrick PJ, Walters SG (2005) Stratiform and strata-bound Zn–Pb–Ag deposits in Proterozoic sedimentary basins, northern Australia. Econ Geol 100:931–963

    Google Scholar 

  • Leach DL, Marsh E, Emsbo P, Rombach C, Kelley K et al (2004) Nature of hydrothermal fluids at the shale-hosted red dog Zn–Pb–Ag deposits, Brooks Range, Alaska. Econ Geol 99:1449–1480

    Article  Google Scholar 

  • Leach DL, Sangster DF, Kelley KD, Ross RL, Garven G et al (2005) Sediment-hosted Pb–Zn deposits: a global perspective. Econ Geol 100:561–608

    Google Scholar 

  • Ludwig K (2012) User’s manual for Isoplot version 3.75–4.15: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley

    Google Scholar 

  • Lydon JW (1996) Sedimentary exhalative sulphides (SEDEX). Geol Can Miner Depos Types 8:130–152

    Google Scholar 

  • Lydon JW, Deb M, Goodfellow WD (2004) Geology of the Belt-Purcell basin and the Sullivan deposit. Sediment-hosted lead-zinc sulfide deposits: attributes and models of some major deposits in India, Australia, and Canada. Narosa Publishing House, New Delhi, pp 100–148

    Google Scholar 

  • Magnall JM, Gleeson SA, Paradis S (2015) The importance of siliceous radiolarian-bearing mudstones in the formation of sediment-hosted Zn-Pb ± Ba mineralization in the Selwyn Basin, Yukon, Canada. Econ Geol 110:2139–2146. https://doi.org/10.2113/econgeo.110.8.2139

    Article  Google Scholar 

  • Magnall JM, Gleeson SA, Stern RA, Newton RJ, Poulton SW et al (2016) Open system sulphate reduction in a diagenetic environment—isotopic analysis of barite (δ34S and δ18O) and pyrite (δ34S) from the Tom and Jason Late Devonian Zn–Pb–Ba deposits, Selwyn Basin, Canada. Geochim Cosmochim Acta 180:146–163. https://doi.org/10.1016/j.gca.2016.02.015

    Article  Google Scholar 

  • McDonough W, Sun S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Memović E, Cvetković VD, Knežević V, Zakariadze G (2003) The Triassic metabasalts of Dudin Krš, near Kosovska Mitrovica, Serbia. Geološki Anali Balkanskog Poluostrva 65:85–91

    Article  Google Scholar 

  • Meschede M (1986) A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb Zr Y diagram. Chem Geol 56:207–218

    Article  Google Scholar 

  • Ohmoto H, Goldhaber MB (1997) Sulfur and carbon isotopes. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, New York, pp 517–612

    Google Scholar 

  • Palinkaš AL et al (2003) Vareš and Veovača, Triassic, Fe–Pb–Zn–Ba SEDEX deposits, related to the advanced Tethyan rifting, Central Bosnia. In: Eliopoulos DG (ed) Mineral exploration and sustainable development. Proceedings of the seventh biennial SGA meeting. Millpress, Rotterdam, pp 1221–1225

    Google Scholar 

  • Palinkaš AL, Bermanec V, Borojević Šoštarić S, Kolar-Jurkovšek T, Strmić Palinkaš S et al (2008a) Volcanic facies analysis of a subaqueous basalt lava-flow complex at Hruškovec, NW Croatia—evidence of advanced rifting in the Tethyan domain. J Volcanol Geotherm Res 178:644–656

    Article  Google Scholar 

  • Palinkaš AL, Borojević Šoštarić S, Strmić Palinkaš S (2008b) Metallogeny of the northwestern and central Dinarides and southern Tisia. Ore Geol Rev 34:501–520

    Article  Google Scholar 

  • Palinkaš AL, Borojević Šoštarić S, Strmić Palinkaš S, Prochaska W, Pécskay Z et al (2016) The Ljubija geothermal field: a herald of the Pangea break-up (NW Bosnia and Herzegovina). Geol Croat 69:3–30

    Article  Google Scholar 

  • Pamić J (1984) Triassic magmatism of the Dinarides in Yugoslavia. Tectonophysics 109:273–307

    Article  Google Scholar 

  • Pearce J, Parkinson I (1993) Trace element models for mantle melting: application to volcanic arc petrogenesis. Geol Soc Lond Spec Publ 76:373–403

    Article  Google Scholar 

  • Polito PA, Kyser TK, Golding SD, Southgate PN (2006) Zinc deposits and related mineralization of the Burketown mineral field, including the world-class Century deposit, northern Australia: fluid inclusion and stable isotope evidence for basin fluid sources. Econ Geol 101:1251–1273

    Article  Google Scholar 

  • Protić Lj, Filipović I, Pelikan P, Jovanović D, Kovacs S, Sudar M, Hips K, Less G, Cvijić R (2000) Correlation of the Carboniferous, Permian and Triassic sequences of the Jadar block, Sana-Una and Bukkium terranes. In: Karamata S, Janković S (eds) Proceedings of the international symposium “Geology and Metallogeny of the Dinarides and the Vardar Zone”. Academy of Sciences and Arts of the Republic of Srpska, Collections and monographs, Banja Luka – Serbian Sarajevo, vol 1, pp 61–69

  • Qian Z (1987) Trace elements in galena and sphalerite and their geochemical significance in distinguishing the genetic types of Pb–Zn ore deposits. Chin J Geochem 6:177–190

    Article  Google Scholar 

  • Radosavljević SA, Stojanović JN, Radosavljević-Mihajlović AS, Kašić VD (2013a) Polymetallic mineralization of the Boranja orefield, Podrinje Metallogenic District, Serbia: zonality, mineral associations and genetic features. Periodico di Mineralogia 82:61–87

    Google Scholar 

  • Radosavljević SA, Vuković N, Stojanović J, Pačevski A et al (2013b) Polymetallic barite-sulfide deposit Bobija, Triassic volcanogenic-sedimentary zone of Podrinje, western Serbia: mineralogy and chemism of sulfides. In: Proceedings of 45th international October conference on mining and metallurgy, pp 531–534

  • Radosavljević SA, Stojanović J, Pačevski A, Radosavljević-Mihajlović A (2016) A review of Pb–Sb (As)–S, Cu (Ag)–Fe (Zn)–Sb (As)–S, Ag (Pb)–Bi (Sb)–S and Pb–Bi–S (Te) sulfosalt systems from the Boranja orefield, West Serbia. Geološki Anali Balkanskog Poluostrva 2016:1–12

    Google Scholar 

  • Raiswell R, Berner RA (1985) Pyrite formation in euxinic and semi-euxinic sediments. Am J Sci 285:710–724. https://doi.org/10.2475/ajs.285.8.710

    Article  Google Scholar 

  • Reynolds MA, Gingras MK, Gleeson SA, Stemler JU (2015) More than a trace of oxygen: ichnological constraints on the formation of the giant Zn–Pb–Ag ± Ba deposits, Red Dog district, Alaska. Geology 43:867–870. https://doi.org/10.1130/G36954.1

    Article  Google Scholar 

  • Robertson A, Karamata S, Šarić K (2009) Overview of ophiolites and related units in the Late Palaeozoic-Early Cenozoic magmatic and tectonic development of Tethys in the northern part of the Balkan region. Lithos 108:1–36

    Article  Google Scholar 

  • Schmid SM, Bernoulli D, Fügenschuh B, Matenco L, Schefer S et al (2008) The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101:139–183

    Article  Google Scholar 

  • Schoonen MAA (2004) Mechanisms of sedimentary pyrite formation. Geol Soc Am Spec Pap 379:117–134

    Google Scholar 

  • Šiftar D (1988) The chemical characteristics of barite from some Bosnian deposits. Rudarsko-metalurški zbornik 35:75–89

    Google Scholar 

  • Stoll B, Jochum KP, Herwig K, Amini M, Flanz M et al (2008) An automated iridium-strip heater for LA-ICP-MS bulk analysis of geological samples. Geostand Geoanal Res 32:5–26

    Article  Google Scholar 

  • Strashimirov S, Popov P (2000) Geology and metallogeny of the Panagyurishte ore region (Srednogorie zone, Bulgaria). In: Strashimirov S, Popov P (eds) ABCD-GEODE 2000 workshop, guide to excursions (A and C). Borovets, Bulgaria, p 50

    Google Scholar 

  • Trubelja F, Burgath K-P, Marchig V (2004) Triassic magmatism in the area of the Central Dinarides (Bosnia and Herzegovina): geochemical resolving of tectonic setting. Geol Croat 57:159–170

    Google Scholar 

  • Vracar R, Saljic L, Sokic M, Matkovic V, Radosavljevic S (2003) Chemical-technological processing of the complex barite-sulphide ore. Scand J Metall 32:289–295

    Article  Google Scholar 

  • Wilkin RT, Barnes HL (1997) Formation processes of framboidal pyrite. Geochim Cosmochim Acta 61:323–339

    Article  Google Scholar 

  • Wilkin RT, Barnes HL, Brantley SL (1996) The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochim Cosmochim Acta 60:3897–3912

    Article  Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343

    Article  Google Scholar 

Download references

Acknowledgements

The company Balkan Exploration and Mining is cordially thanked for allowing us to sample the outcrops and for logistics and expert support. This work was supported through the Serbian Ministry of Education, Science and Technological Development, Grant/Award Number: 176016. We would like to thank the speleothem research group of the University of Mainz for their support with the micro mill. Dr. Moreno from the University of Barcelona is acknowledged for the analyses of the sulphur isotopes. Kristina Šarić and Vladica Cvetković are thanked for useful discussions and critical comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Maurer.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurer, M., Prelević, D., Mertz-Kraus, R. et al. Genesis and metallogenetic setting of the polymetallic barite-sulphide deposit, Bobija, Western Serbia. Int J Earth Sci (Geol Rundsch) 108, 1725–1740 (2019). https://doi.org/10.1007/s00531-019-01732-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-019-01732-8

Keywords

Navigation