Skip to main content

Advertisement

Log in

Biomarker paleo-reconstruction of the German Wealden (Berriasian, Early Cretaceous) in the Lower Saxony Basin (LSB)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

During the Early Cretaceous (Berriasian; Wealden 3–4), Northwestern Germany was covered by an east–west elongated tentatively brackish lake in which locally more than 700 m-thick black shales were deposited. While the distribution of organofacies’ in the basin is relatively well documented, the paleoenvironmental conditions in the basin center (e.g., occurrence and spread of water column stratification) and the spatial record of biomarkers in Wealden 3–4 shales (and coals) are rarely known. We here present respective data from the entire basin. In large areas, total organic carbon (TOC) contents are above 5 wt% and HI values above 700 mg hydrocarbons (HC)/g TOC, supporting the high potential of shales in the central basin as petroleum source rocks. Furthermore, bulk geochemical data as well as biomarkers clearly mirror the Wealden 3–4 facies distribution with the differentiation of a predominantly terrestrial setting east of the Weser River and an aquatic and brackish lake setting in the west. Certain biomarkers such as isorenieratane, specific for green sulfur bacteria, indicate that the basin consisted of a permanently stratified water column with a brackish/marine deep water body and an oxic–anoxic transition zone in the photic zone. In the southwestern gate of the lake (including the Isterberg area) and towards the east, no water column stratification developed. Characteristic of Wealden 3–4 black shale organic matter are: high relative abundances of saturated versus aromatic hydrocarbons (most likely due to high Botryococcus algal input), highly negative δ13C values in the extract fractions, low isotopic “canonical variables” (sensu Sofer in AAPG Bull 68:31–49, 1984), and high gammacerane, dinosterane, and C35-homohopane relative abundances. Interpreting those data, the different sub-facies of the environmental setting can be excellently documented. Particularly, in the western part of the basin, Wealden 3–4 shales are important petroleum source rocks. However, an overlap of biomarker signatures with those from Jurassic Posidonienschiefer Formation (“Posidonia”) shales from the same area shows that oil–source rock correlations in this area remain challenging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Baldschuhn R, Binot F, Fleig S, Kockel F (2001) Geotektonischer Atlas von NW-Deutschland und des deutschen Nordsee-Sektors—Strukturen, Strukturentwicklung, Paläogeographie. Geol Jahrb A 153:1–40

    Google Scholar 

  • Bartenstein H, Teichmüller M, Teichmüller R (1971) Die Umwandlung der organischen Substanz im Dach des Bramscher Massivs. Fortschr Geol Rheinl Westf 18:501–538

    Google Scholar 

  • Berkaloff C, Casadevall E, Largeau C, Metzger P, Peracca S, Viret J (1983) The resistant walls of the hydrocarbon-rich alga Botryococcus braunii. Phytochemistry 22:389–397

    Article  Google Scholar 

  • Berndmeyer C, Thiel V, Schmale O, Wasmund N, Blumenberg M (2014) Biomarkers in the stratified water column of the Landsort Deep (Baltic Sea). Biogeoscience 11:7009–7023. https://doi.org/10.5194/bg-11-7009-2014

    Article  Google Scholar 

  • Berner U (2011) The German Wealden, an unconventional hydrocarbon play? Erdöl Kohle Gas 127:303–307

    Google Scholar 

  • Berner RA, Raiswell R (1984) C/S method for distinguishing freshwater from marine sedimentary rocks. Geology 12:365–368

    Article  Google Scholar 

  • Berner U, Kahl T, Scheeder G (2010) Hydrocarbon potential of sediments of the German Wealden Basin. Erdöl Kohle Gas 2:80–84

    Google Scholar 

  • BGR (2016) Schieferöl und Schiefergas in Deutschland—Potenziale und Umweltaspekte. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover

    Google Scholar 

  • Binot F, Gerling P, Hiltmann W, Kockel F, Wehner H (1993) The petroleum system in the Lower Saxony Basin. In: Spencer AM (ed) Generation, accumulation, and production of Europe’s hydrocarbons. Springer, Berlin, pp 121–139

    Chapter  Google Scholar 

  • Blumenberg M, Heunisch C, Lückge A, Scheeder G, Wiese F (2016) Photic zone euxinia in the central Rhaetian Sea prior the Triassic-Jurassic boundary. Palaeogeogr Palaeoclimatol Palaeoecol 461:55–64. https://doi.org/10.1016/j.palaeo.2016.08.007

    Article  Google Scholar 

  • Boon JJ, Rijpstra IC, DeLange F, De Leeuw JW (1979) Black Sea sterol—a molecular fossil for dinoflagellate blooms. Nature 277:125–217

    Article  Google Scholar 

  • Bourbonniere RA, Meyers PA (1996) Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnol Oceanogr 41:352–359

    Article  Google Scholar 

  • Brassell SC, Eglinton G, Maxwell JR (1983) The geochemistry of terpenoids and steroids. Biochem Soc Trans 11:575–586

    Article  Google Scholar 

  • Brock TD, Madigan MT (1991) Biology of microorganisms, 6th edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Brooks PW, Maxwell JR (1974) Early stage fate of phytol in a recently-deposited lacustrine sediment. Adv Org Geochem Proc Int Meet 6th 1973:977–991

    Google Scholar 

  • Bruns B, Littke R, Gasparik M, van Wees JD, Nelskamp S (2016) Thermal evolution and shale gas potential estimation of the Wealden and Posidonia Shale in NW-Germany and the Netherlands: a 3D basin modelling study. Basin Res 28:2–33. https://doi.org/10.1111/bre.12096

    Article  Google Scholar 

  • Chalansonnet S, Largeau C, Casadevall E, Berkaloff C, Peniguel G, Couderc R (1988) Cyanobacterial resistant biopolymers. Geochemical implications of the properties of Schizothrix sp. resistant material. Org Geochem 13:1003–1010

    Article  Google Scholar 

  • Collister JW, Wavrek DA (1996) δ13C compositions of saturate and aromatic fractions of lacustrine oils and bitumens: evidence for water column stratification. Org Geochem 24:913–920. https://doi.org/10.1016/S0146-6380(96)00066-6

    Article  Google Scholar 

  • Collister JW, Summons RE, Lichtfouse E, Hayes JM (1992) An isotopic biogeochemical study of the Green River oil shale. Org Geochem 19:265–276. https://doi.org/10.1016/0146-6380(92)90042-V

    Article  Google Scholar 

  • Dahl J, Michael Moldowan J, Sundararaman P, Montana (1993) Relationship of biomarker distribution to depositional environment: phosphoria formation. USA Org Geochem 20:1001–1017. https://doi.org/10.1016/0146-6380(93)90109-O

    Article  Google Scholar 

  • Didyk BM, Simoneit BRT, Brassell SC, Eglinton G (1978) Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature 272:216–222

    Article  Google Scholar 

  • Eglinton TI, Douglas AG (1988) Quantitative study of biomarker hydrocarbons released from kerogens during hydrous pyrolysis. Energy Fuels 2:81–88

    Article  Google Scholar 

  • Eglinton G, Hamilton RJ (1963) The distribution of alkanes. In: Swain T (ed) Chemical plant taxonomy. Academic, New York, pp 187–217

    Google Scholar 

  • Eigenbrode JL, Freeman KH, Summons RE (2008) Methylhopane biomarker hydrocarbons in Hamersley Province sediments provide evidence for Neoarchean aerobiosis. Earth Planet Sci Lett 273:323–331

    Article  Google Scholar 

  • Elstner F, Mutterlose J (1996) The Lower Cretaceous (Berriasian and Valanginian) in NW Germany. Cretac Res 17:119–133

    Article  Google Scholar 

  • Erbacher J, Hiss M, Luppold FW, Mutterlose J (2014) Bückeburg-Gruppe (in German) BGR. https://litholex.bgr.de

  • Espitalié J (1986) Use of Tmax as a maturation index for different types of organic matter. Comparison with vitrinite reflectance. In: Burrus J (ed) Thermal modeling in sedimentary basins. IFP research conferences on exploration. Editions Technip, Paris, pp 475–496

    Google Scholar 

  • Espitalié J, Laporte JL, Madec M, Marquis F, Leplat P, Paulet J, Boutefeu A (1977) Méthode rapide de caractérisation des roches mètres, de leur potentiel pétrolier et de leur degré d’évolution. Oil Gas Sci Technol Rev IFP 32:23–42

    Google Scholar 

  • French KL, Rocher D, Zumberge JE, Summons RE (2015) Assessing the distribution of sedimentary C40 carotenoids through time. Geobiology 13:139–151. https://doi.org/10.1111/gbi.12126

    Article  Google Scholar 

  • Grice K, Schaeffer P, Schwark L, Maxwell JR (1996) Molecular indicators of palaeoenvironmental conditions in an immature Permian shale (Kupferschiefer, Lower Rhine Basin, north-west Germany) from free and S-bound lipids. Org Geochem 25:131–147

    Article  Google Scholar 

  • Jeremiah JM, Duxbury S, Rawson P (2010) Lower Cretaceous of the southern North Sea Basins: reservoir distribution within a sequence stratigraphic framework. Neth J Geosci Geologie en Mijnbouw 89:203–237. https://doi.org/10.1017/S0016774600000706

    Google Scholar 

  • Killops S, Killops V (2005) Introduction to organic geochemistry, 2nd edn. Blackwell, Oxford

    Google Scholar 

  • Kockel F, Wehner H, Gerling P (1994) Petroleum systems of the Lower Saxony Basin, Germany. AAPG Memoir 60:573–586

    Google Scholar 

  • Kohnen MEL, Schouten S, Sinninghe Damsté JS, De Leeuw JW, Merritt DA, Hayes JM (1992) Recognition of paleobiochemicals by a combined molecular sulfur and isotope geochemical approach. Science 256:358–362

    Article  Google Scholar 

  • Koopmans MP et al (1996) Diagenetic and catagenetic products of isorenieratene: molecular indicators for photic zone anoxia. Geochim Cosmochim Acta 60:4467–4496

    Article  Google Scholar 

  • Lafargue E, Marquis F, Pillot D (1998) Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Revue de l’Institut français du pétrole 53:421–437

    Article  Google Scholar 

  • Largeau C, Casadevall E, Kadouri A, Metzger P (1984) Formation of Botryococcus-derived kerogens—Comparative study of immature torbanites and of the extent alga Botryococcus braunii. Org Geochem 6:327–332

    Article  Google Scholar 

  • Mackenzie AS, Brassell SC, Eglinton G, Maxwell JR (1982) Chemical fossils: the geological fate of Steroids. Science 217:491–504

    Article  Google Scholar 

  • Mello MR, Gaglianone PC, Brassell SC, Maxwell JR (1988) Geochemical and biological marker assessment of depositional environments using Brazilian offshore oils. Mar Petrol Geol 5:205–223. https://doi.org/10.1016/0264-8172(88)90002-5

    Article  Google Scholar 

  • Mißbach H, Duda JP, Lünsdorf NK, Schmidt BC, Thiel V (2016) Testing the preservation of biomarkers during experimental maturation of an immature kerogen. Int J Astrobiol 15:165–175

    Article  Google Scholar 

  • Moldowan JM, Seifert WK (1980) First discovery of Botryococcane in petroleum. J Chem Soc Chem Comm 568:912–914

    Article  Google Scholar 

  • Moldowan JM, Dahl J, Huizinga BJ, Fago FJ, Hickey LJ, Peakman TM, Taylor DW (1994) The molecular fossil record of oleanane and its relation to angiosperms. Science 265:768–771. https://doi.org/10.1126/science.265.5173.768

    Article  Google Scholar 

  • Mutterlose J, Bornemann A (2000) Distribution and facies patterns of Lower Cretaceous sediments in northern Germany: a review. Cretac Res 21:733–759. https://doi.org/10.1006/cres.2000.0232

    Article  Google Scholar 

  • Peters KE, Moldowan JM (1991) Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum. Org Geochem 17:47–61

    Article  Google Scholar 

  • Peters KE, Walters CC, Moldowan JM (2005) The biomarker guide volume 2: biomarkers and isotopes in petroleum exploration and earth history, vol 2. The Press Syndicate of the University of Cambridge, Cambridge

    Google Scholar 

  • Reinhardt M, Duda JP, Blumenberg M, Ostertag-Henning C, Reitner J, Thiel V (2018) The taphonomic fate of isorenieratene derivatives in Lower Jurassic oil shales—controlled by iron? Geobiology 16:237–251

    Article  Google Scholar 

  • Requejo AG (1994) Maturation of petroleum source rocks—II. Quantitative changes in extractable hydrocarbon content and composition associated with hydrocarbon generation. Org Geochem 21:91–105. https://doi.org/10.1016/0146-6380(94)90089-2

    Article  Google Scholar 

  • Riboulleau A, Schnyder J, Riquier L, Lefebvre V, Baudin F, Deconinck J-F (2007) Environmental change during the Early Cretaceous in the Purbeck-type Durlston Bay section (Dorset, Southern England): a biomarker approach. Org Geochem 38:1804–1823. https://doi.org/10.1016/j.orggeochem.2007.07.006

    Article  Google Scholar 

  • Rippen D, Littke R, Bruns B, Mahlstedt N (2013) Organic geochemistry and petrography of Lower Cretaceous Wealden black shales of the Lower Saxony Basin: the transition from lacustrine oil shales to gas shales. Org Geochem 63:18–36. https://doi.org/10.1016/j.orggeochem.2013.07.013

    Article  Google Scholar 

  • Schneider AC, Heimhofer U, Heunisch C, Mutterlose J (2018) The Jurassic–Cretaceous boundary interval in non-marine strata of northwest Europe—new light on an old problem. Cretac Res 87:42–54. https://doi.org/10.1016/j.cretres.2017.06.002

    Article  Google Scholar 

  • Schott W, Jaritz W, Kockel F, Sames CW, von Stackelberg U, Stets J, Stoppel D (1969) Paläogeographischer Atlas der Unterkreide von Nordwestdeutschland mit einer Übersichtsdarstellung des nördlichen Mitteleuropas und Erläuterungen. Bundesanstalt für Bodenforschung, Hannover

    Google Scholar 

  • Schwark L, Frimmel A (2004) Chemostratigraphy of the Posidonia Black Shale, SW-Germany II. Assessment of extent and persistence of photic-zone anoxia using aryl isoprenoid distributions. Chem Geol 206:231–248

    Article  Google Scholar 

  • Sinninghe Damsté JS, Kenig F, Koopmans MP, Köster J, Schouten S, Hayes JM, de Leeuw J (1995) Evidence for gammacerane as an indicator of water column stratification. Geochim Cosmochim Acta 59:1895–1900

    Article  Google Scholar 

  • Sofer Z (1984) Stable carbon isotope compositions of crude oils: application to source depositional environments and petroleum alteration. AAPG Bull 68:31–49

    Google Scholar 

  • Strauss C, Elstner F, Du Chene RJ, Mutterlose J, Reiser H, Brandt KH (1993) New micropaleontological and palynological evidence on the stratigraphic position of the,German Wealden* in NW-Germany. Zitteliana 20:389–401

    Google Scholar 

  • Summons RE, Jahnke LL, Hope JM, Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–557

    Article  Google Scholar 

  • Ten Haven HL, Rohmer M, Rullkoetter J, Bisseret P (1989) Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments. Geochim Cosmochim Acta 53:3073–3079

    Article  Google Scholar 

  • van Krevelen DW (1993) Coal—typology, physics, chemistry, constituents, 3rd edn. Elsevier, Oxford

    Google Scholar 

  • Volkman JK (2014) Acyclic isoprenoid biomarkers and evolution of biosynthetic pathways in green microalgae of the genus Botryococcus. Org Geochem 75:36–47. https://doi.org/10.1016/j.orggeochem.2014.06.005

    Article  Google Scholar 

  • Wakeham SG et al (2007) Microbial eoclogy of the stratified water column of the Black Sea as revealed by a comprehensive biomarker study. Org Geochem 38:2070–2097

    Article  Google Scholar 

  • Wehner H, Binot F, Delisle G, Gerling JP, Hiltmann W, Kockel F (1988) Genese und Migration von Erdlöen im Niedersächsischen Becken: Entwicklung einer integrierten geoligsch-geochemischen Explorationsmethode auf Kohlenwasserstoffe; Abschlussbericht für das östliche Becken. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover

    Google Scholar 

  • Wehner H, Binot F, Gerling JP, Hiltmann W, Kockel F (1989) Genese und Migration von Erdlölen im Niedersächsischen Becken: Entwicklung einer integrierten geoligsch-geochemischen Explorationsmethoden auf Kohlenwasserstoffe; Abschlussbericht über das westliche Niedersächsische Becken (Raum westlich der Weser). BMFT Forschungsvorhaben, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover

    Google Scholar 

  • Wiesner M (1983) Lithologische und geochemische Faziesuntersuchugen an biumniösen Sedimenten des Berrrias im Raum Bentheim-Salzbergen (Emsland). PhD Thesis, University of Hamburg

  • Withers N (1983) Dinoflagellates sterols. In: Scheuer PJ (ed) Marine natural products. chemical and biological perspectives, vol 5. Academic, New York, pp 87–130

    Google Scholar 

  • Wolburg J (1959) Die Cyprideen des NW-deutschen Wealden (in German). Senckenbergiana Lethea 40:223–315

    Google Scholar 

  • Wolff GA, Lamb NA, Maxwell JR (1986) The origin and fate of 4-methyl steroids—II. Dehydration of stanols and occurrence of C30 4-methyl steranes. Org Geochem 10:965–974

    Article  Google Scholar 

  • Ziegs V, Mahlstedt N, Bruns B, Horsfield B (2014) Predicted bulk composition of petroleum generated by Lower Cretaceous Wealden black shales, Lower Saxony Basin, Germany. Int J Earth Sci 104:1605–1621. https://doi.org/10.1007/s00531-014-1081-y

    Article  Google Scholar 

  • Zink KG, Scheeder G, Stueck HL, Biermann S, Blumenberg M (2016) Total shale oil inventory from an extended Rock-Eval approach on non-extracted and extracted source rocks from Germany. Int J Coal Geol 163:186–194. https://doi.org/10.1016/j.coal.2016.06.023

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for their constructive comments, which significantly improve the manuscript. Ulrich Berner, Eva Stiller, Carsten Helm, and Ulf Rogalla are thanked for collaborations and data compilation in the frame of the NIKO project. Stefan Ladage is acknowledged for valuable discussions and Monika Weiß, Sylvia Kramer, Petra Adam, Sabrina Koopmann, Ina Sosnitza, and Annegret Tietjen are thanked for laboratory assistance. We thank EMPG, Neptune Energy and Wintershall for the permission to use samples and publish results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Blumenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blumenberg, M., Zink, K.G., Scheeder, G. et al. Biomarker paleo-reconstruction of the German Wealden (Berriasian, Early Cretaceous) in the Lower Saxony Basin (LSB). Int J Earth Sci (Geol Rundsch) 108, 229–244 (2019). https://doi.org/10.1007/s00531-018-1651-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-018-1651-5

Keywords

Navigation