Skip to main content
Log in

Clastic wedge provenance in the Zemplinicum Carboniferous–Permian rocks using the U–Pb zircon age dating (Western Carpathians, Slovakia)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

U–Pb (SHRIMP) detrital zircon ages from the Pennsylvanian–Permian meta-sedimentary rocks of the Zemplinicum Unit were used to characterise the provenance and the tectono-thermal evolution of the basement. The magmatic zircon ages from the contemporaneous rhyolite pyroclastics, ranging from 308 to 305 Ma, dated the Pennsylvanian sedimentary formations to the Moscovian and Kasimovian Ages. Two brakes in sedimentation within the Pennsylvanian–Permian sequence are presumed, first, flanked by Gzhelian–Asselian and second, intra-Permian. The detrital zircon age spectrum demonstrates two prominent populations: (i) Middle/Late Ordovician (age peak 459 Ma), (ii) Ediacaran–Cryogenian (age peaks 592 and 641 Ma). These, together with minor clusters from ~ 773 to 950 Ma, evidently document the Pan-African multiple magmatic events. The 1.1–1.8 Ga age gap and isolated zircons of Mesoproterozoic ages (1036–1361 Ma) are characteristic. Two populations, 1.8–2.2 Ga and 2.5–2.8 Ga, are presented within the Paleoproterozoic–Neoarchean zircons. The Zemplinicum Neoproterozoic arc crust had been affected by the extensional thermal relaxation and melting during Middle/Late Ordovician. The subsequent reworking had been connected with the Mississippian collision, followed by the Pennsylvanian/Permian extension. The presence of the Neoproterozoic detrital zircon ages including the Tonian ones permit to compare the Zemplinicum basement with the eastern peri-Gondwanan domain, which was situated at the northern margin of the Saharan Metacraton or the Arabian Nubian Shield during Neoproterozoic time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andersen T (2005) Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chem Geol 216:249–270

    Article  Google Scholar 

  • Andrusov D (1968) Grundriss der Tektonik der Nördlichen Karpaten. Slovak Academy of Sciences Publ House, Bratislava, p 188

    Google Scholar 

  • Andrusov D, Bystrický J, Fusán O (1973) Outline of the structure of the West Carpathians: Guide book, Xth Congress CBGA. Dionýz Štúr Geological Institute, Bratislava, pp 1–44

    Google Scholar 

  • Balintoni I, Balica C, Ducea NM, Hann PH (2014) Peri-Gondwanan terranes in the Romanian Carpathians: a review of their spatial distribution, origin, provenance, and evolution. Geosci Front 5:395–411

    Article  Google Scholar 

  • Baňacký V, Vass D, Elečko M, Kaličiak M, Lexa J, Straka P, Vozár J, Vozárová A (1986) Geological map from the southern part of East Slovakia Lowland and Zemplín Mts., 1:50,000. Dionýz Štúr Inst Geol, Bratislava

    Google Scholar 

  • Baňacký V, Elečko M, Kaličiak M, Straka P, Škvarka L, Šucha P, Vass D, Vozárová A, Vozár J (1989) Explanation to Geological map of the southern part of East Slovakia Lowland and Zemplín Mts., 1:50 000. Dionýz Štúr Inst Geol, Bratislava, p 143 (in Slovak, English summary, p 145)

    Google Scholar 

  • Be’eri-Shlevin Y, Avigad D, Gerdes A, Zlatkin O (2014) Detrital zircon U-Pb-Hf systematics of Israeli coastal sands: new perspectives on the provenance on Nile sediments. J Geol Soc 171:107–116

    Article  Google Scholar 

  • Bibikova EV, Cambel B, Korikovsky SP, Broska I, Gracheva TV, Makarov VA, Arakeliants MM (1988) U-Pb and K-Ar isotopic dating of Sinec (Rimavica) granites (Kohút zone of Veporides). Geol Zborn Geol Carpath 39:147–157

    Google Scholar 

  • Biely A, Bezák V, Elečko M, Gross P, Kaličiak M, Konečný V, Lexa J, Mello J, Nemčok J, Potfaj M, Rakús M, Vass D, Vozár J, Vozárová A (1996) Explanation to geological map of Slovakia, 1:500,000. Dionýz Štúr Publishers, Bratislava, p 76

    Google Scholar 

  • Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ, Foudoulis C (2003) TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chem Geol 200:155–170. https://doi.org/10.1016/S0009-2541(03)00165-7

    Article  Google Scholar 

  • Bouček B, Přibyl A (1959) Geological evolution of Zemplínske vrchy Hills in Eastern Slovakia. Geologické Práce Zošit 52:185–222 (in Czech)

    Google Scholar 

  • Broska I, Petrík I, Beʹeri-Shlevin Y, Majka J, Bezák V (2013) Devonian/Mississippian I-type granitoids in the Western Carpathians: a subduction-related hybrid magmatism. Lithos 162–163:27–36

    Article  Google Scholar 

  • Dickinson WR, Gehrels GE (2008) U-Pb ages of detrital zircons in relation to paleogeography: Triassic paleodrainage networks and sediment dispersal across southwest Laurentia. J Sediment Res 78(12):745–764

    Article  Google Scholar 

  • Dickinson WR, Gehrels GE (2009) Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth Planet Sci Lett 288(1–2):115–125. https://doi.org/10.1016/j.epsl.2009.09.013

    Article  Google Scholar 

  • Dörr W, Zulauf G, Gerdes A, Lahaye Y, Kowalczyk G (2015) A hidden Tonian basement in the eastern Mediterranean: age constraints from U–Pb data of magmatic and detrital zircons of the External Hellenides (Crete and Peloponesus). Precambrian Res 258:83–108. https://doi.org/10.1016/j.precamres.2014.12.015

    Article  Google Scholar 

  • Drost K, Gerdes A, Jeffries T, Linnemann U, Storey C (2011) Provenance of Neoproterozoic and early Paleozoic siliciclastic rocks of the Teplá-Barrandian unit (Bohemian Massif): evidence from U-Pb detrital zircon ages. Gondwana Res 19(1):213–231

    Article  Google Scholar 

  • Ebner F, Rantitsch G, Russegger B, Vozárová A, Kovács S (2006) A three component (organic carbon, pyritic sulphur, carbonate content) model as a tool for lithostratigraphic correlation of Carboniferous sediments in the Alpine-Carpathian-North Pannonian realm. Geol Carpath 57(4):243–256

    Google Scholar 

  • Együd K (1982) Sedimentology of Upper Paleozoic strata in the Zemplínske vrchy Mts. Miner Slovaca 14(5):385–401 (in Slovak, English summary)

    Google Scholar 

  • Faryad SW (1995) Geothermometry of metamorphic rocks from the Zemplinicum (Western Carpathians, Slovakia). Geol Carpath 46:113–123

    Google Scholar 

  • Faryad SW, Balogh K (2002) Variscan pegmatite and K–Ar and Ar–Ar dating from basement rocks of the Zemplin Unit, Western Carpathians. Acta Geol Hung 45:193–205

    Article  Google Scholar 

  • Faryad SW, Vozárová A (1997) Geology and metamorphism of the Zemplinicum basement unit (Western Carpathians). In: Grecula P, Hovorka D, Putiš M (eds) Geological evolution of the Western Carpathians. Miner Slov Monograph, Bratislava, pp 351–356

    Google Scholar 

  • Finger F, Faryad SW (1999) A Variscan monazite age from the Zemplín basement (eastern Western Carpathians). Acta Geol Hung 42:301–307

    Google Scholar 

  • Finger F, Broska I, Haunschmid B, Hraško L, Kohút M, Krenn E, Petrík I, Riegler G, Uher P (2003) Electron-microprobe dating of monazites from Western Carpathian basement granitoids: plutonic evidence for an important Permian rifting event subsequent to Variscan crustal anatexis. Int J Earth Sci (Geol Rundsch) 92:86–98. https://doi.org/10.1007/s00531-002-0300-0

    Google Scholar 

  • Froitzheim N, Plašienka D, Schuster R (2008) Alpine tectonics of the Alps and Western Carpathians. In: McCann (ed) The geology of central Europe Vol. 2: mesozoic and cenozoic, pp 1141–1232

  • Fülöp J (1994) Geology of Hungary. Paleozoic II. Academic, Budapest, p 445 (in Hungarian)

    Google Scholar 

  • Gaab AS, Poller U, Janák M, Kohút M, Todt W (2005) Zircon U–Pb geochronology and isotopic characterization for the pre-Mesozoic basement of the Northern Veporic unit (Central Western Carpathians, Slovakia). Schweiz Mineral Petrogr Mitt 85:69–88

    Google Scholar 

  • Gärtner A, Villeneuve M, Linnemann U, El Archi A, Bellon H (2013) An exotic terrane of Laurussian affinity in the Mauretanides and Souttoufides (Moroccan Sahara). Gondwana Res 24:687–699

    Article  Google Scholar 

  • Gehrels GE, Dickinson WR, Reley BCD, Finney SC, Smith MT (2000) Detrital zircon geochronology of the Roberts Mountains allochthon. In: Soreghan MJ, Gehrels GE (eds) Paleozoic and Triassic Paleogeography and Tectonics of Western Nevada and Northern California. Geol Soc Am Spec Pap, vol 347, pp 19–42

  • Gorton MP, Schandl ES (2000) From continents to island arcs: a geochemical index of tectonic setting for arc-related and within plate felsic to intermediate volcanic rocks. Can Mineral 38:1065–1073

    Article  Google Scholar 

  • Grecula P, Együd K (1977) Position of the Zemplín Inselberg in the tectonic frame of the Carpathians. Miner Slov 9(6):449–462 (in Slovak, English summary)

    Google Scholar 

  • Grecula P, Együd K (1982) Lithostratigraphy of Upper Paleozoic and Lower Triassic strata of the Zemplínske vrchy Mts. (SE Slovakia). Miner Slov 14:221–239 (in Slovak)

    Google Scholar 

  • Grecula P, Kaličiak M, Tözsér J, Varga I (1981) Geology of the borderland between the West and East Carpathians in the work of Jan Slávik. In: Grecula P (ed) New data, correlations and problems. Seminary Geological days of Jan Slávik. Spec Issue of Slov Geol Surv, pp 17–32 (in Slovak)

  • Guttiérrez-Alonso G, Fernández-Suárez J, Pastor-Galán D, Johnston ST, Linnemann U, Hoffman M, Shaw J, Colmenero JR, Hernández P (2015) Significance of detrital zircons in Siluro-Devonian rocks from Iberia. J Geol Soc 172:309–322. https://doi.org/10.1144/jgs2014-118

    Article  Google Scholar 

  • Guynn J, Gehrels GE (2010) Comparison of detrital zircon age distribution using the K-S test. University of Arizona, Tuscon, pp 1–16 http://sites.google.com/a/laserchron.org/laserchron/home. Accessed 8 Mar 2017

  • Harris NBW, Pearce JA, Tindle AG (1986) Geochemical characteristics of collision-zone magmatism. In: Coward MP, Ries AC (eds) Collision tectonics, Geol Soc Spec Publ, vol 19, pp 67–81

  • Henderson BJ, Collins WJ, Murphy JB, Gutiérrez-Alonso G, Hand M (2016) Gondwanan basement terranes of the Variscan Appalachian orogen: Baltican, Saharan and West African hafnium isotopic fingerprints in Avalonia, Iberia and the Armorican Terranes. Tectonophysics 681:278–304 (In: Murphy JB, Nance RD, Johnson ST (eds) Tectonic evolution of the Iberian margin of Gondwana and of correlative region. A celebration of the career of Cecilio Quesada)

    Article  Google Scholar 

  • International Commission on Stratigraphy (2017) International Chronostratigraphic Chart v 2017/02. http://www.stratigraphy.org/ICSchart/ChronostratChart 2017-02.pdf

  • Izart A, The 343 IGCP working group (1998) Stratigraphic correlations between the continental and marine Tethyan and Peri-Tethyan basins during the Late Carboniferous and the Early Permian. Geodiversitas 20(4):521–596 (In: Crasquin-Soleau S, Izart A, Vaslet D, De Wever P (eds) Peri-Tethys: stratigraphic correlations 2)

    Google Scholar 

  • Janák M, Finger F, Plašienka D, Petrík I, Humer B, Méreš Š, Lupták B (2002) Variscan high P-T recrystallization of Ordovician granitoids in the Veporic unit (Nízke Tatry Mountains, Western Carpathians): new petrological and geochronological data. Geolines 14:38–39

    Google Scholar 

  • Kisházi P, Ivancsics J (1988) Contribution to the petrology of crystalline schists in the Zemplín structure. Bull Hung Geol Soc 2:109–124

    Google Scholar 

  • Kohút M, Poller U, Gurk Ch, Todt W (2008) Geochemistry and U-Pb detrital zircon ages of metasedimentary rocks of the Lower Unit, Western Tatra Mts. Acta Geol Polonica 58:371–382

    Google Scholar 

  • Kohút M, Uher P, Putiš M, Ondrejka M, Sergeev S, Larionov A, Paderin I (2009) SHRIMP U-Th-Pb zircon dating of the granitoid massifs in the Malé Karpaty Mountains (Western Carpathians): evidence of Meso-Hercynian successive S- to I-type granitic magmatism. Geol Carpath 60(5):345–350

    Article  Google Scholar 

  • Kolodner K, Avigad D, McWilliams M, Wooden LJ, Weissbrod T, Feinstein S (2006) Provenance of north Gondwana Cambrian-Ordovician sandstone: U-Pb SHRIMP dating of detrital zircons from Israel and Jordan. Geol Mag 143(3):367–391. https://doi.org/10.1017/S0016756805001640

    Article  Google Scholar 

  • Kráľ J, Hess JC, Kober B, Lippolt HJ (1997) 207Pb/206Pb and 40Ar/39Ar age data from plutonic rocks of the Strážovské vrchy Mts. basement, Western Carpathians. In: Grecula P, Hovorka D, Putiš M (eds) Geological evolution of the Western Carpathians. Miner Slov Monograph, Bratislava, pp 253–260

    Google Scholar 

  • Kröner A, Stern RJ (2005) Pan-African Orogeny. Encyclopedia of Geology, vol 1. Elsevier, Amsterdam, pp 1–12 2004)

    Book  Google Scholar 

  • Larionov AN, Andreichev VA, Gee DG (2004) The Vendian alkaline igneous suite of northern Timan: ion microprobe U-Pb zircon ages of gabbros and syenite. Mem Geol Soc Lond 30:69–74 (In: Gee DG, Pease V (eds) The Neoproterozoic Timanide Orogen of Eastern Baltica)

    Article  Google Scholar 

  • Lelkes-Felvári G, Árkai P, Sassi FP, Balogh K (1996) Main features of the regional metamorphic events in Hungary: a review. Geol Carpath 47:257–270

    Google Scholar 

  • Linnemann U, Pereira F, Jeffries TE, Drost K, Gerdes A (2008) The Cadomian Orogeny and the opening of the Rheic Ocean: the diachrony of geotectonic processes constrained by LA-ICP-MS U-Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461:21–43

    Article  Google Scholar 

  • Linnemann U, Gerdes A, Hofmann M, Marko L (2014) The Cadomian Orogen: Neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton—constraints from U-Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambrian Res 244:236–278

    Article  Google Scholar 

  • Ludwig KR (2005b) User’s Manual for ISOPLOT/Ex 3.22. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, pp 1–71. http://www.bgca.org/klprogrammenu.html

  • Ludwig KR (2005аa) SQUID 1.12 A Userʼs Manual. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, pp 1–22. http://www.bgca.org/klprogrammenu.html

  • Ludwig KR (2012) User’s Manual for Isoplot 3.75. A geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, pp 1–75. http://www.bgc.org/isoplot.html

  • Magyar J (1986) Geology and petrography of the crystalline window of the Zemplinicum and the surrounding formations. Manuscript. Comenius University, Bratislava, p 78 (in Slovak)

    Google Scholar 

  • Maheľ M (1986) Geological structure of the Czechoslovak Carpathians, part 1: Paleoalpine units. Monograph. Veda Publishing House, Bratislava, pp 1–503 (in Slovak)

    Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:228

    Article  Google Scholar 

  • McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst. https://doi.org/10.1029/2000GC000109

    Google Scholar 

  • Meinhold G, Kostopoulos D, Frei D, Himmerkus F, Reischmann T (2010) U-Pb LA-SF-ICP-MS zircon geochronology of the Serbo-Macedonian Massif, Greece: paleotectonic constraints for Gondwana-derived terranes in the Eastern Mediterranean. Int J Earth Sci (Geol Rundsch) 99:813–832

    Article  Google Scholar 

  • Mello J, Reichwalder P, Vozárová A (1998) Bôrka Nappe: high-pressure relic from the subduction-accretion prism of the Meliata Ocean (Inner Western Carpathians, Slovakia). Slovak Geol Mag 4:261–274

    Google Scholar 

  • Menning M, Alekseev AS, Chuvashov BI, Davydov VI, Devuyst F-X, Forke HC, Grunt TA, Hance L, Heckel PH, Izokh NG, Jin Y-G, Jones PJ, Kotlyar GV, Kozur HW, Nemyrovska TI, Schneider JW, Wang X-D, Weddige K, Weyer D, Work DM (2006) Global time scale and regional stratigraphic reference scale of Central and West Europe, Tethys, South China, and North America as used in the Devonian–Carboniferous–Permian Correlation Chart 2003 (DCP 2003). Palaegeogr Palaeoclim Palaeoecol 240(1–2):318–372

    Article  Google Scholar 

  • Milička J, Franců J, Horváth I, Toman B (1991) Optical, structural and thermal characterization of meta-anthracite from Zemplinicum, West Carpathians. Geol Zborn Geol Carpath 42(1):53–58

    Google Scholar 

  • Murphy JB, Nance RD (1989) Model for evolution of the Avalonian-Cadomian belt. Geology 17:735–738

    Article  Google Scholar 

  • Murphy JB, Eguíluz L, Zulauf G (2002) Cadomian Orogens, peri-Gondwana correlatives and Laurentia–Baltica connections. Tectonophysics 352:1–9

    Article  Google Scholar 

  • Murphy JB, Pisarevsky SA, Nance RD, Keppie JD (2004) Neoproterozoic-Early Paleozoic evolution of peri-Gondwanan terranes: implication for Laurentia-Gondwana connection. Int J Earth Sci (Geol Rundsch) 93:659–682

    Article  Google Scholar 

  • Nance RD, Murphy JB, Keppie JD (2002) A Cordilleran model for the evolution of Avalonia. Tectonophysics 352:11–31

    Article  Google Scholar 

  • Němejc F (1946) Contribution to knowledge of floral remnants and stratigraphical division of Permo-Carboniferous of Slovakia. Rozpravy II Třídy České Akademie Věd. Praha 15:1–34 (in Czech)

    Google Scholar 

  • Němejc F, Obrhel J (1958) Investigation of some plant imprints from Permian–Carboniferous of Slovakia. Zprávy o geologických výskumech v roce 1957. Ústřední ústav geologický, Praha, pp 165–166 (in Czech)

    Google Scholar 

  • Neubauer F (2002) Evolution of late Neoproterozoic to early Paleozoic tectonic elements in Central and Southeast European Alpine mountain belts: review and synthesis. Tectonophysics 352(1–2):87–103. https://doi.org/10.1016/S0040-1951(02)00190-7

    Article  Google Scholar 

  • Neubauer F, Frisch W, Hansen BT (2002) Early Paleozoic tectonothermal events in basement complexes of the eastern Greywacke Zone (Eastern Alps): evidence from U-Pb zircon data. Int J Earth Sci (Geol Rundsch) 91:775–786

    Article  Google Scholar 

  • Pantó G (1965) A Tokaji-hegység harmadkor elötti képzödményei. Magyar All Foldt in Évi Jel az 1963. Evrol, Budapest, pp 227–241 (in Hungarian)

    Google Scholar 

  • Pantó G, Balogh K, Kovács S, Sámsoni Z (1967) Rb/Sr check of Assyntian and Caledonian igneous activity and metamorphism in NE-Hungary. Acta Geol Acad Sci Hung 11:279–282

    Google Scholar 

  • Pearce JA (1996) A user’s guide to basalt discrimination diagrams In: Wymann DA (ed) Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Geo Assoc Canada, Short Course Note, vol 12, pp 79–113

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace elements discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Article  Google Scholar 

  • Planderová E, Sitár V, Grecula P, Együd K (1981) Biostratigraphically evaluation graphite shales of Zemplín Inselgebirge (Eastern Slovakia). Miner Slovaca 13:97–128 (in Slovak, English summary)

    Google Scholar 

  • Plašienka D (1998) Paleotectonic evolution of the Central Western Carpathians during the Jurassic and Cretaceous. In: Rakús M (ed) Geodynamic development of the Western Carpathians. Geol Surv Slovak Rep, Bratislava, pp 107–130

    Google Scholar 

  • Poller U, Todt W (2000) U-Pb single zircon data of granitoids from the High Tatra Mountains (Slovakia): implications for the geodynamic evolution. Geol Soc Am Spec Pap 350:235–243

    Google Scholar 

  • Poller U, Janák M, Kohút M, Todt W (2000) Early Variscan magmatism in the Western Carpathians: U-Pb zircon data from granitoids and orthogneisses of the Tatra Mountains (Slovakia). Int J Earth Sci (Geol Rundsch) 89(2):336–349. https://doi.org/10.1007/s005310000082

    Article  Google Scholar 

  • Putiš M, Sergeev S, Ondrejka M, Larionov A, Siman P, Spišiak J, Uher P, Paderin I (2008) Cambrian-Ordovician metaigneous rocks associated with Cadomian fragments in the West-Carpathian basement dated by SHRIMP on zircons: a record from the Gondwana active margin setting. Geol Carpath 59(1):3–18

    Google Scholar 

  • Putiš M, Ivan P, Kohút M, Spišiak J, Siman P, Radvanec M, Uher P, Sergeev S, Larionov A, Méreš Š, Demko R, Ondrejka M (2009) Meta-igneous rocks of the West-Carpathian basement, Slovakia: indicators of Early Paleozoic extension and shortening events. Bull Soc Géol Fr 180(6):461–471

    Article  Google Scholar 

  • Rakús M, Potfaj M, Vozárová A (1998) Basic paleogeographic and paleotectonic units of the Western Carpathians. In: Rakús M (ed) Geodynamic development of the Western Carpathians. Monograph. Geological Survey of Slovak Republic, Bratislava, pp 15–24

    Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust – a lower crustal perspective. Rev Geophys 33:267–309

    Article  Google Scholar 

  • Shaw J, Guttieréz-Alonso G, Johnston ST, Pastor-Galán D (2014) Provenance variability along the Early Ordovician north Gondwana margin: Paleogeographic and tectonic implications of U-Pb detrital zircon ages from the Armorican Quartzite of the Iberian Variscan belt. Geol Soc Am Bull. https://doi.org/10.1130/B30935.1

    Google Scholar 

  • Slávik J (1976) Zemplinicum, a new tectonic unit of the Central Western Carpathians. Geologické Práce Správy 65:7–19 (in Slovak)

    Google Scholar 

  • Stampfli GM, von Raumer J, Wilhem C (2011) The distribution of Gondwana-derived terranes in the Early Paleozoic. In: Gutiérrez-Marco JC, Rábano I, García-Bellido D (eds) Ordovician of the World. Cuadernos del Museo Geominero, vol 14. Instituto Geológico y Minero de España, Madrid, pp 567–574

    Google Scholar 

  • Stampfli GM, Hochard C, Vérard C, Wilhem C, von Raumer J (2013) The formation of Pangea. Tectonophysics 593:1–19

    Article  Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    Article  Google Scholar 

  • Šucha V, Kraus I, Madejová J (1994) Ammonium illite from anchimetamorphic shale associated with anthracite in Zemplinicum of the Western Carpathians. Clays Clays Miner 29:369–377

    Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotope systematic of oceanic basalts implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345 (In: Sounders AD, Norry MJ (eds) Magmatism in ocean basins)

    Article  Google Scholar 

  • Ustaömer PA, Ustaömer T, Gerdes A, Zulauf G (2011) Detrital zircon ages from a Lower Ordovician quartzite of the Istambul exotic terrane (NW Turkey): evidence for Amazonian affinity. Int J Earth Sci (Geol Rundsch) 100:23–41. https://doi.org/10.1007/s00531-009-0498-1

    Article  Google Scholar 

  • von Raumer JF, Stampfli GM (2008) The birth of Rheic Ocean—Early Paleozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics 461:9–20

    Article  Google Scholar 

  • von Raumer JF, Stampfli GM, Bussy F (2003) Gondwana-derived microcontinents—the constituents of the Variscan and Alpine collisional orogens. Tectonophysics 365:7–22

    Article  Google Scholar 

  • Vozár J, Hanzel V, Vozárová A, Zlínska A (1986) Data processing from the borehole BB-1 (650 m), Byšta locality. Manuscript. Archives of Slovak Geological Survey, Bratislava (in Slovak)

    Google Scholar 

  • Vozárová A (1986) Problems with the lithostratigraphic classification of the Permo-Carboniferous of the Zemplínske vrchy Mts. and characteristics of the Luhyňa Formation. Regionálna geológia Západných Karpát 21:39–46 (in Slovak)

    Google Scholar 

  • Vozárová A (1991) Petrology of crystalline rocks of Zemplinicum (West Carpathians). Západné Karpaty. Sér Miner Petr Geoch Metalog 14:7–59 (in Slovak, English summary)

    Google Scholar 

  • Vozárová A (1998) Late Carboniferous to Early Permian time interval in the Western Carpathians: Northern Tethys Margin. Geodiversitas 20(4):621–641 (In: Crasquin-Soleau S, Izart A, Vaslet D, De Wever P (eds) Peri-Tethys: stratigraphic correlations 2)

    Google Scholar 

  • Vozárová A, Vozár J (1977) Principal features of the Late Paleozoic paleogeography in the Western Carpathians. Geologické Práce Správy 64:81–97 (in Slovak, English summary)

    Google Scholar 

  • Vozárová A, Vozár J (1988) Late Paleozoic in West Carpathians. Monograph D Štúr Inst Geol, Bratislava, p 314

    Google Scholar 

  • Vozárová A, Šarinová K, Larionov A, Presnyakov S, Sergeev S (2010) Late Cambrian /Ordovician magmatic arc type volcanism in the Southern Gemericum basement, Western Carpathians, Slovakia: U–Pb (SHRIMP) data from zircons. Int J Earth Sci (Geol Rundsch) 99(Suppl 1):S17–S37. https://doi.org/10.1007/s00531-009-0454-0

    Article  Google Scholar 

  • Vozárová A, Šarinová K, Rodionov N, Laurinc D, Paderin I, Sergeev S, Lepekhina E (2012) U–Pb ages of detrital zircons from Paleozoic metasandstones of the Gelnica Terrane (Southern Gemeric Unit, Western Carpathians, Slovakia): evidence for Avalonian–Amazonian provenance. Int J Earth Sci (Geol Rundsch) 101:919–936. https://doi.org/10.1007/s00531-011-0705-8

    Article  Google Scholar 

  • Vozárová A, Laurinc D, Šarinová K, Larionov A, Presnyakov S, Rodionov N, Paderin I (2013) Pb ages of detrital zircons in relation to geodynamic evolution: Paleozoic of the Northern Gemericum (Western Carpathians, Slovakia). J Sediment Res 83:915–927. https://doi.org/10.2110/jsr.2013.66

    Article  Google Scholar 

  • Vozárová A, Rodionov N, Šarinová K, Presnyakov S (2017a) New zircon ages on the Cambrian–Ordovician volcanism of the Southern Gemericum basement (Western Carpathians, Slovakia): SHRIMP dating, geochemistry and provenance. Int J Earth Sci (Geol Rundsch) 106:2147–2170. https://doi.org/10.1007/s00531-016-1420-2

    Article  Google Scholar 

  • Vozárová A, Larionov A, Šarinová K, Vďačný M, Lepekhina E, Vozár J, Lvov P (2017b) Detrital zircon from the Hronicum Carboniferous–Permian sandstones (Western Carpathians, Slovakia): depositional age and provenance. Int J Earth Sci (Geol Rundsh). https://doi.org/10.1007/s00531-017-1556-8

    Google Scholar 

  • Wang X, Griffin WL, Chen J, Huang P, Li X (2011) U and Th contents and Th/U ratios of zircon in felsic and mafic magmatic rocks: improved zircon–melt distribution coefficient. Acta Geol Sinica (English Edition) 85(1):164–174. https://doi.org/10.1111/j.1733-6724.2011.00387.x

    Article  Google Scholar 

  • Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandard Newslett 19:1–23

    Article  Google Scholar 

  • Williams IS (1998) U-Th-Pb geochronology by ion microprobe. Rev Econ Geol 7:1–35 (In: McKissen MA, Shanks WC, Ridley WS (eds) Applications of microanalytical techniques to understanding mineralizing processes)

    Article  Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343

    Article  Google Scholar 

  • Zulauf G, Dörr W, Fiala J, Romano SS (2007) Crete to Minoan terranes: age constraints from U-Pb dating of detrital zircons. Geol Soc Am Spec Publ 423:401–409

    Google Scholar 

  • Zulauf G, Dörr W, Fischer-Spurlock SC, Gerdes A, Chatzaras V, Xypolias P (2015) Closure of Paleotethys in the external Hellenides: constraints from U-Pb ages of magmatic and detrital zircons (Crete). Gondwana Res 28(2):642–667

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of the Slovak Research and Development Agency (Project ID: APVV-0546-11) and VEGA (project VEGA 1/0141/15) is gratefully acknowledged. The authors would like to thank M. Kohút and an unknown reviewer for the constructive reviews which led to a significant improvement of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Vozárová.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 60 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vozárová, A., Larionov, A., Šarinová, K. et al. Clastic wedge provenance in the Zemplinicum Carboniferous–Permian rocks using the U–Pb zircon age dating (Western Carpathians, Slovakia). Int J Earth Sci (Geol Rundsch) 108, 115–135 (2019). https://doi.org/10.1007/s00531-018-1645-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-018-1645-3

Keywords

Navigation