Skip to main content
Log in

A new U–Pb LA-ICP-MS age of the Rumburk granite (Lausitz Block, Saxo-Thuringian Zone): constraints for a magmatic event in the Upper Cambrian

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The basement of the Saxo-Thuringian Zone consists of Upper Neoproterozoic (c. 650-570 Ma) Cadomian arc sediments (Lusatian greywackes) and voluminous intrusions of Early Cambrian granitoids with ages of c. 540 Ma (Lausitz Block and Karkonosze–Izera Massif). The latter basement complexes comprise several c. 505 Ma granites, granodiorites, and gneisses emplaced during the change from a collisional tectonic setting to rift-related geotectonics. We present a new age for the Rumburk granite of 504 ± 3 Ma linking Late Cambrian plutonism at the northern margin of Gondwana with the initial phase of a Cambro–Ordovician rift event. Trace element analysis points to a linkage of the Rumburk granite with other Late Cambrian aged rocks of the Karkonosze–Izera Massif. Furthermore, geochemical data also provide evidence of a melting and recycling of Lusatian greywackes by the intrusion of the Rumburk granite. The youngest age peak of the Rumburk granite at c. 504 Ma is considered to be the age of emplacement. Older inherited age populations at c. 540 and c. 610 Ma are present and likely the result of a melting and recycling of Lusatian granitoids and greywackes. The appearance of Neoproterozoic inheritance and Lu–Hf similarities with the Rumburk granite strongly suggest the Lusatian greywackes as source rocks. There is a significant age gap of c. 35 Ma between Cambrian plutonic and volcanic rocks in Saxo-Thuringia. Hence, we consider two distinct pulses of magmatic activity during the transition from the Cadomian orogeny to the opening of the Rheic Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abubaker A, Hofmann M, Gärtner A, Linnemann U, Elicki O (2017) First U–Pb geochronology on detrital zircons from Early-Middle Cambrian strata of the Torgau-Doberlug Syncline (eastern Germany) and palaeogeographic implications. Int J Earth Sci (Geol Rundsch). doi:10.1007/s00531-016-1440-y

    Google Scholar 

  • Altumi MM, Elicki O, Linnemann U, Hofmann M, Sagawe A, Gärtner A (2013) U–Pb LA–ICP–MS detrital zircon ages from the Cambrian of Al Qarqaf Arch, central-western Libya: provenance of the West Gondwanan sand sea at the dawn of the early Palaeozoic. J Afr Earth Sc 79:74–97

    Article  Google Scholar 

  • Bankwitz P, Bankwitz E, Kramer W, Pin C (1992) Early Paleozoic bimodal volcanism in the Vesser area, Thuringian Forest, eastern Germany. Zentralblatt für Geologie und Paläontologie Teil I 9(10):1113–1132

    Google Scholar 

  • Białek D (2003) Cadomian basement of Lusatia. In: Ciężkowski W, Wojewoda J, Żelaźniewicz A (eds) Sudety Zachodnie: od wendu do czwartorzędu. WIND, Wrocaw, pp 33–40

    Google Scholar 

  • Białek D (2007) Zawidów granodiorite from the Lusatian Massif in SW Poland. In: Kozłowski A, Wiszniewska J (eds) Granitoids in Poland. Arch Mineral Monograph 1, pp 89–99

  • Białek D, Kryza R, Oberc-Dziedzic T, Pin C (2014) Cambrian Zawidów granodiorites in the Cadomian Lusatian Massif (Central European Variscides): what do the SHRIMP zirconages mean? J Geosci 59:313–326

    Google Scholar 

  • Borkowska M, Hameurt J, Vidal P (1980) Origin and age of Izera gneisses and Rumburk granites in the Western Sudetes. Acta Geol Pol 30:121–145

    Google Scholar 

  • Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sc Lett 273:48–57

    Article  Google Scholar 

  • Bradley DC, O’Sullivan P, Cosca MA, Motts HA, Horton JD, Taylor CD, Beaudoin G, Lee GK, Ramezani J, Bradley DB, Jones JV, Bowring S (2015) Synthesis of Geological, Structural, and Geochronologic Data (Phase V, Deliverable 53). In: Chapter A of Taylor CD (ed.) Second Projet de Renforcement Institutionnel du Secteur Minier de la République Islamique de Mauritanie (PRISM-II). U.S. Geological Survey Open-File Report 2013-12080-A, p 328

  • Buschmann B (1995) Geotectonic facies analysis of the Rothstein Formation (Neoproterozoic Saxothuringian Zone, east Germany). Dissertation, TU Bergakademie Freiberg

  • Buschmann B, Nasdala L, Jonas P, Linnemann U, Gehmlich M (2001) SHRIMP U–Pb dating of tuff-derived and detrital zircons from Cadomian marginal basin fragments (Neoproterozoic) in the northeastern Saxothuringian Zone (Germany). Neues Jahrb Geol P M 6:321–342

    Google Scholar 

  • Chauvel C, Lewin E, Carpentier M, Arndt NT, Marini JC (2008) Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array. Nat Geosci 1:64–67

    Article  Google Scholar 

  • Cotta B (1839) Erläuterungen zur Section VI der geognostischen Charte des Königreiches Sachsen und der angrenzenden Länderabteilungen. Arnoldische Buchhandlung, Dresden and Leipzig

    Google Scholar 

  • Domečka K (1970) Pre-Variscan granitoids of the West Sudeten. Sbor Geol Věd Geol 18:161–189

    Google Scholar 

  • Ennih N, Liegeois J-P (2008) The Boundaries of the West African Craton, with Special Reference to the Basement of the Moroccan Metacratonic Anti-Atlas Belt. Geol Soc London Spec Publ 297:1–17

    Article  Google Scholar 

  • Frei D, Gerdes A (2009) Precise and accurate in situ U–Pb dating of zircon with high sample throughput by automated LA-SF-ICP–MS. Chem Geol 261:261–270

    Article  Google Scholar 

  • Gärtner A, Villeneuve M, Linnemann U, El Archi A, Bellon H (2013) An exotic terrane of Laurussian affinity in the Mauritanides and Souttoufides (Moroccan Sahara). Gondwana Res 24:687–699

    Article  Google Scholar 

  • Gehmlich M (2003) Die Cadomiden und Varisziden des Saxothuringischen Terranes–Geochronologie magmatischer Ereignisse. Freib Forsch C500:1–129

    Google Scholar 

  • Gehmlich M, Linnemann U, Tichomirowa M, Lützner H, Bombach K (1997) Die Bestimmung des Sedimentationsalters cadomischer Krustenfragmente im Saxothuringikum durch die Einzelzirkon-Evaporationsmethode. Terra Nostra 5:46–49

    Google Scholar 

  • Gerdes A, Zeh A (2006) Combined U–Pb and Hf isotope LA-(MC-) ICP-MS analysis of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–61

    Article  Google Scholar 

  • Gerdes A, Zeh A (2009) Zircon formation versus zircon alteration: new insights from combined U–Pb and Lu–Hf in situ LA-ICPMS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chem Geol 261:230–243

    Article  Google Scholar 

  • Gradstein FM, Ogg JG, Schmitz MD, Ogg G (eds) (2012) The geologic time scale (Volumes 1 & 2). Elsevier, Amsterdam

    Google Scholar 

  • Hammer J (1996) Geochemie und Petrogenese der cadomischen und spätvariszischen Granitoide der Lausitz. Freib Forsch C 463:1–107

    Google Scholar 

  • Hammer J, Eidam J, Röber B, Ehling B-C (1999) Prä-variscischer und variscischer granitoider Magmatismus am NE-Rand des Böhmischen Massivs – Geochemie und Petrogenese. Z geol Wiss 27:401–415

    Google Scholar 

  • Harris NBW, Pearce JA, Tindle AG (1986) Geochemical characteristics of collision-zone magmatism. Geological Society, London, Special Publications, vol 19, issue 1, pp 67–81

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar JM, Hoskin PWO (eds.) Zircon. Rev Mineral Geochem 53:27–62

    Article  Google Scholar 

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211:47–69

    Article  Google Scholar 

  • Kemnitz H, Romer RL, Oncken O (2002) Gondwana Break-up and northern margin of the Saxothuringian belt (Variscides of Central Europe). Int J Earth Sci 91:246–259

    Article  Google Scholar 

  • Korytowski A, Dörr W, Żelaźniewicz A (1993) U–Pb dating of (meta)granitoids in the NW Sudetes (Poland) and their bearing on tectonostratigraphic correlation. Terra Nova 5 1:331–332 (Abstract Supplement)

    Google Scholar 

  • Kossmat F (1927) Gliederung des vastistischen Gebirgsbaues. Abh Sächsischen Geol Landesamtes 1:1–39

    Google Scholar 

  • Kröner A, Hegner E (1998) Geochemistry, single zircon ages, and Sm–Nd systematics of granitoid rocks from the Góry Sowie (Owl) mountains, Polish West Sudetes: evidence for early Palaeozoic arc-related plutonism. J Geol Soc London 155:711–724

    Article  Google Scholar 

  • Kröner A, Hegner E, Hammer J, Haase G, Bielicki KH, Krauss M, Eidam J (1994) Geochronology and Nd-Sr systematics of Lusatian granitoids: significance for the evolution of the Variscan orogen in east-central Europe. Geol Rundsch 83:357–376

    Article  Google Scholar 

  • Kröner A, Jaeckel P, Hegner E, Opletal M (2001) Single zircon ages and whole-rock Nd isotopic systematics of early Palaeozoic granitoid gneisses from the Czech and Polish Sudetes (Jizerské hory, Krkonoše Mountains and Orlice-Sněžník Complex). Int J Earth Sci 90:304–324

    Article  Google Scholar 

  • Kryza R, Pin C (1997) Cambrian/Ordovician magmatism in the Polish Sudetes: no evidence for subduction-related setting. EUG 9 Meeting, Strasbourg, Terra Abstracts, p 144

  • Linnemann U (1991) Glazioeustatisch kontrollierte Sedimentationsprozesse im Oberen Proterozoikum der Elbezone (Weesensteiner Gruppe/Sachsen). Zbl Geo Pal 12(1):2907–2934

    Google Scholar 

  • Linnemann U, Buschmann B (1995a) Der Nachweis der cadomischen Diskordanz in einer Tiefenbohrung bei Gera und deren Bedeutung für das proterozoisch-paläozoische Standardprofil im Schwarzburger Antiklinorium. Geowiss Mitt Thüringen 3:1–11

    Google Scholar 

  • Linnemann U, Buschmann B (1995b) Die cadomische Diskordanz im Saxothuringikum (oberkambrisch-tremadocische overlap-Sequenzen). Z Geol Wiss 23(5/6):707–727

    Google Scholar 

  • Linnemann U, Heuse T (2000) The Ordovician of the Schwarzburg Anticline: geotectonic setting, biostratigraphy and sequence stratigraphy (Saxo-Thuringian Terrane). Z Dtsch Geol Ges 151:471–491

    Google Scholar 

  • Linnemann U, Romer RL (2001) Geochemical and Nd-Sr-Pb isotopic characterization of Cadomian and Cambro-Ordovician sedimentary rocks with constraints to geotectonic setting and provenance (Saxo-Thuringia, Germany). Schriftenreihe Deutsch Geol Ges (Potsdam)

  • Linnemann U, Romer RL (2002) The Cadomian orogeny in Saxo-Thuringia, Germany: geochemical and Nd–Sr–Pb isotopic characterization of marginal basins with constraints to geotectonic setting and provenance. Tectonophysics 352:33–64

    Article  Google Scholar 

  • Linnemann U, Gehmlich M, Tichomirowa M, Buschmann B, Nasdala L, Jonas P, Lützner H, Bombach K (2000) From Cadomian Subduction to Early Paleozoic Rifting: the Evolution of Saxo-Thuringia at the Margin of Gondwana in the Light of Single Zircon Geochronology and Basin Development (Central European Variscides, Germany). Geol Soc Lond Spec Publ 179:131–153

    Article  Google Scholar 

  • Linnemann U, McNaughton NJ, Romer RL, Gehmlich M, Drost K, Tonk T (2004) West African provenance for Saxo-Thuringia (Bohemian Massif): did Armorica ever leave pre-Pangean Gondwana?—U/Pb-SHRIMP zircon evidence and the Nd-isotopic record. Int J Earth Sci (Geol Rundsch) 93:683–705

    Article  Google Scholar 

  • Linnemann U, Gerdes A, Drost K, Buschmann B (2007) The continuum between Cadomian orogenesis and opening of the Rheic Ocean: constraints from LA-ICP-MS U–Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, northeastern Bohemian Massif, Germany). Geol S Am S 423:61–96

    Google Scholar 

  • Linnemann U, Romer RL, Pin C, Aleksandrowski P, Bula Z, Geisler T, Kachlik V, Krzeminska E, Mazur S, Motuza G, Murphy JB, Nance RD, Pisarevsky SA, Schulz B, Ulrich I, Wiszniewska J, Zaba I, Zeh A (2008a) The Precambrian. In: McCann T (ed) The Geology of Central Europe, vol 1. Precambrian and Paleozoic. Geological Society of London, London, pp 21–101

    Google Scholar 

  • Linnemann U, D’Lemos R, Drost K, Jeffries T, Gerdes A, Romer RL, Samson SD, Strachan R (2008b) Cadomian Tectonics. In: McCann T (ed) The Geology of Central Europe, vol 1. Precambrian and Paleozoic. Geological Society of London, London, pp 103–154

    Google Scholar 

  • Linnemann U, Romer RL, Gerdes A, Jeffries TE, Drost K, Ulrich J (2010a) The Cadomian Orogeny in the Saxo-Thuringian Zone. In: Linnemann U, Romer RL (eds) Pre-Mesozoic Geology of Saxo-Thuringia—from the Cadomian Active Margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 37–58

    Google Scholar 

  • Linnemann U, Hofmann M, Romer RL, Gerdes A (2010b) Transitional stages between the Cadomian and Variscan orogenies: Basin development and tectono-magmatic evolution of the southern margin of the Rheic Ocean in the Saxo-Thuringian Zone (North Gondwana shelf). In: Linnemann U, Romer RL (eds) Pre-Mesozoic Geology of Saxo-Thuringia—from the Cadomian Active Margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 59–98

    Google Scholar 

  • Linnemann U, Gerdes A, Hofmann M, Marko L (2014) The Cadomian Orogen: neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton—Constraints from U–Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambrian Res 244:236–278

    Article  Google Scholar 

  • Ludwig KR (2001) Users Manual for Isoplot/Ex rev. 2.49. Berkeley Geochronology Center Special Publication 1a

  • Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643

    Article  Google Scholar 

  • Nakamura N (1974) Determination of REE, BA, FE, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim Cosmochim Acta 38:757–775

    Article  Google Scholar 

  • Nance RD, and Murphy JB (1996) Basement isotopic signatures and Neo-proterozoic paleogeography of Avalonian-Cadomian and related terranes in the circum-North Atlantic. In: Nance RD, Thompson MD (eds.) Avalonian and related peri-Gondwanan terranes of the circum-North Atlantic. Geological Society of America Special Paper, vol. 304, pp 333–346

  • Nance RD, Murphy JB, Keppie JD (2002) A Cordilleran model for the evolution of Avalonia. Tectonophysics 352:1–21

    Article  Google Scholar 

  • Oberc-Dziedzic T, Pin C, Kryza R (2005) Early Palaeozoic crustal melting in an extensional setting: petrological and Sm–Nd evidence from the Izera granite-gneisses, Polish Sudetes. Int J Earth Sci 94:354–368

    Article  Google Scholar 

  • Oberc-Dziedzic T, Kryza R, Pin C, Mochnacka K, Larionov A (2009) The Orthogneiss and Schist Complex of the Karkonosze-Izera Massif (Sudetes, SW Poland): U–Pb SHRIMP zircon ages, Nd-isotope systematics and protoliths. Geol Sudet 41:3–24

    Google Scholar 

  • Oliver GJH, Corfu F, Krogh TE (1993) U-Pb ages from SW Poland: evidence for a Caledonian suture zone between Baltica and Gondwana. J Geol Soc Lond 150:355–369

    Article  Google Scholar 

  • Opletal M, Domečka K, Vavřín I (1983) Granitoide des Lausitzer Massivs im Südteil des Šluknov Gebiet und ihre neue petrologische Bestimmung. Sbor Geol Věd, Geol 38:141–175

    Google Scholar 

  • Pearce JA, Harris NBW, Tindle AJ (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Article  Google Scholar 

  • Philippe S, Haack U, Żelaźniewicz A, Dörr W, Franke W (1995) Preliminary geochemical and geochronological results on shear zones in the Izera-Karkonosze Block (Sudetes, Poland). Terra Nostra 8:122

    Google Scholar 

  • Pin C, Marini F (1993) Early Ordovician continental break up in Variscan Europe: Nd–Sr isotope and trace element evidence from bimodal igneous associations of the southern Massif Central, France. Lithos 29:177–196

    Article  Google Scholar 

  • Pin C, Kryza R, Oberc-Dziedzic T, Mazur S, Turniak K, Waldhausrová J (2007) The diversity and geodynamic significance of Late Cambrian (c 500 Ma) felsic anorogenic magmatism in the northern part of the Bohemian Massif: a review based on Sm–Nd isotope and geochemical data. In: Linnemann U, Kraft P, Nance D, Zulauf G (eds.) The Geology of Peri-Gondwana: Avalonian–Cadomian Terranes, Adjoining Cratons, and the Rheic Ocean. Geological Society of America Special Publication, vol. 423, pp 209–230

  • Postelmann A (1937) Die Ursachen der Blaufärbung gesteinsbildender Quarze. N Jb Mineral Geol Paläont Abt A Beilage 72:401–440

    Google Scholar 

  • Reinisch R (1920) Erläuterungen zur Geologischen Karte von Sachsen 1:25000, Blatt 87 (Seifhennersdorf-Rumburg) II. Aufl

  • Rocci G, Bronner G, Deschamps M (1991) Crystalline Basement of the West African Craton. The West African Orogens and Circum-Atlantic Correlatives. Springer, Berlin

    Google Scholar 

  • Schneider Santos JO, Hartmann LA, Gaudette HE, Groves D, McNaughton NJ, Fletcher IR (2000) A new understanding of the provinces of the Amazon craton based on integration of field mapping and U–Pb and Sm–Nd geochronology. Gondwana Res 3:453–488

    Article  Google Scholar 

  • Sircombe KN (2004) AGE DISPLAY: an EXCEL workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions. Comput Geosci 30:21–31

    Article  Google Scholar 

  • Slama J, Kosler J, Concon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plesovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford

    Google Scholar 

  • Thompson RN (1982) Magmatism of the British Tertiary Volcanic Province. Scot J Geol 18:49–107

    Article  Google Scholar 

  • Tichomirowa M (2002) Zircon inheritance in diatexite granodiorites and its consequence on geochronology—a case study in Lusatia and Erzgebirge (Saxo-Thuringia, eastern Germany). Chem Geol 191:209–224

    Article  Google Scholar 

  • Tichomirowa M, Berger H-J, Koch EA, Belyatski BV, Götze J, Kempe U, Nasdala L, Schaltegger U (2001) Zircon ages of high-grade Gneisses in the eastern Erzgebirge (Central European Variscides)—constraints on origin of the rocks and Precambrian to Ordovician magmatic events in the Variscan foldbelt. Lithos 56:303–332

    Article  Google Scholar 

  • Wang X, Griffin WL, Chen J, Huang P, Li X (2011) U and Th Contents and Th/U Ratios of Zircon in Felsic and Mafic Magmatic Rocks: improved Zircon-Melt Distribution Coefficients. Acta Geol Sin 85(1):164–174 (English Edition)

    Article  Google Scholar 

  • Wilson M (1989) Igneous petrogenesis. Unwin Hyman, London

    Book  Google Scholar 

  • Żelaźniewicz A, Nowak I, Achramowicz S, Czapliński W (2003) The northern part of the Izera-Karkonosze Block: a passive margin of the Saxothuringian terrane. In: Ciężkowski W, Wojewoda J, Żelaźniewicz A (eds) Sudety Zachodnie: od wendu do czwartorzędu. WIND, Wrocaw, pp 17–32

    Google Scholar 

  • Żelaźniewicz A, Dörr W, Bylina P, Franke W, Haack U, Heinisch H, Schastok J, Grandmontagne K, Kulicki C (2004) The eastern continuation of the Cadomian orogen: U–Pb zircon evidence from Saxo-Thuringian granitoids in south-western Poland and the northern Czech Republic. Int J Earth Sci (Geol Rundsch) 93:773–781

    Article  Google Scholar 

  • Żelaźniewicz A, Fanning CM, Achramowicz S (2009) Refining the granite, gneiss and schist interrelationships within the Lusatian-Izera Massif, West Sudetes, using SHRIMP U–Pb zircon analyses and new geologic data. Geol Sudet 41:67–84

    Google Scholar 

  • Zulauf G, Schitter F, Riegler G, Finger F, Fiala J, Vejnar Z (1999) Age constraints on the Cadomian evolution of the Teplá Barrandian unit (Bohemian Massif) through electron microprobe dating of metamorphic monazite. Z Dt Ges Geowiss 150:627–639

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to P Vickers-Rich for the revision of the English. The constructive comments and suggestions by F Neubauer and an anonymous reviewer greatly helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zieger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zieger, J., Linnemann, U., Hofmann, M. et al. A new U–Pb LA-ICP-MS age of the Rumburk granite (Lausitz Block, Saxo-Thuringian Zone): constraints for a magmatic event in the Upper Cambrian. Int J Earth Sci (Geol Rundsch) 107, 933–953 (2018). https://doi.org/10.1007/s00531-017-1511-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-017-1511-8

Keywords

Navigation