Skip to main content

Advertisement

Log in

Historical coseismic surface deformation of fluvial gravel deposits, Schafberg fault, Lower Rhine Graben, Germany

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Intraplate earthquakes pose a significant seismic hazard in densely populated rift systems like the Lower Rhine Graben in Central Europe. While the locations of most faults in this region are well known, constraints on their seismogenic potential and earthquake recurrence are limited. In particular, the Holocene deformation history of active faults remains enigmatic. In an exposure excavated across the Schafberg fault in the southwestern Lower Rhine Graben, south of Untermaubach, in the epicentral region of the 1756 Düren earthquake (M L 6.2), we mapped a complex deformation zone in Holocene fluvial sediments. We document evidence for at least one paleoearthquake that resulted in vertical surface displacement of 1.2 ± 0.2 m. The most recent earthquake is constrained to have occurred after 815 AD, and we have modeled three possible earthquake scenarios constraining the timing of the latest event. Coseismic deformation is characterized by vertical offset of sedimentary contacts distributed over a 10-m-wide central damage zone. Faults were identified where they fracture and offset pebbles in the vertically displaced gravel layers and fracture orientation is consistent with the orientation of the Schafberg fault. This study provides the first constraint on the most recent surface-rupturing earthquake on the Schafberg fault. We cannot rule out that this fault acted as the source of the 1756 Düren earthquake. Our study emphasizes the importance of, and the need for, paleoseismic studies in this and other intracontinental regions, in particular on faults with subtle geomorphic expression that would not typically be recognized as being potentially seismically active. Our study documents textural features in unconsolidated sediment that formed in response to coseismic rupturing of the underlying bedrock fault. We suggest that these features, e.g., abundant oriented transgranular fractures in their context, should be added to the list of criteria used to identify a fault as potentially active. Such information would result in an increase of the number of potentially active faults that contribute to seismic hazards of intracontinental regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahorner L (1962) Untersuchungen zur Quartären Bruchtektonik der Niederrheinischen Bucht, Eiszeitalter und Gegenwart. Quat Sci J 13:24–105

    Google Scholar 

  • Ahorner L (1975) Present-day stress field and seismotectonic block movements along major fault zones in central Europe. Tectonophysics 29:233–249

    Article  Google Scholar 

  • Ahorner L (2001) Abschätzung der statistischen Wiederkehrperiode von starken Erdbeben im Gebiet von Köln auf Grund von geologisch-tektonischen Beobachtungen an aktiven Störungen. DGG Mitteilungen 2:2–9

    Google Scholar 

  • Azanón JM, Azor A, Booth-Rea G, Torcal F (2004) Small-scale faulting, topographic steps and seismic ruptures in the Alhambra (Granada, southeast Spain). J Quat Sci 19(3):219–227

    Article  Google Scholar 

  • Baran R, Guest B, Friedrich AM (2010) High-resolution spatial rupture pattern of a multiphase flower structure, Rex Hills, Nevada: new insights on scarp evolution in complex topography based on 3-D laser scanning. Geol Soc Am Bull 122:897–914

    Article  Google Scholar 

  • Blume HP, Brümmer GW, Fleige H, Horn R, Kandeler E, Kögel-Knabner I, Kretzschmar R, Stahr K, Wilke BM (2016) Soil development and soil classification. In: Scheffer/Schachtschabel soil science. Springer, Berlin, Germany, pp 285–389

    Chapter  Google Scholar 

  • Bonilla MG (1988) Minimum earthquake magnitude associated with coseismic surface faulting. Bull Assoc Eng Geol 25:17–29

    Google Scholar 

  • Bork HR, Lang A (2003) Quantification of past soil erosion and land use/land cover changes in Germany. Lect Notes Earth Sci 101:231–239

    Article  Google Scholar 

  • Bronk Ramsey C (2013) OxCal 4.2, Manual. https://c14.arch.ox.ac.uk/oxcalhelp/hlp_contents.html. Accessed 27 Mar 2013

  • Camelbeeck T, Meghraoui M (1996) Large earthquakes in Northern Europe more likely than once thought. EOS 77:405–409

    Article  Google Scholar 

  • Camelbeeck T, Meghraoui M (1998) Geological and geophysical evidence for large palaeo-earthquakes with surface faulting in the Roer Graben (northwest Europe). Geophys J Int 132:347–362

    Article  Google Scholar 

  • Camelbeeck T, Vanneste K, Alexandre P, Verbeeck K, Petermans T, Rosset P, Everaerts M, Warnant R, Van Camp M (2007) Relevance of active faulting and seismicity studies to assessments of long-term earthquake activity and maximum magnitude in intraplate northwest Europe, between the Lower Rhine Embayment and the North Sea. In: Stein S, Mazotti S (eds) Continental intraplate earthquakes: science, hazard, and policy issues. The Geological Society of America Special Paper, 425, 193–224

  • Cerdan O, Govers G, Le Bissonnais Y, Van Oost K, Poesen J, Saby N, Gobin A, Vacca A, Quinton J, Auerswald K (2010) Rates and spatial variations of soil erosion in Europe: a study based on erosion plot data. Geomorphology 122:167–177

    Article  Google Scholar 

  • Cheng AHD (1986) Effect of sediment on earthquake-induced reservoir hydrodynamic response. J Eng Mech 112:654–665

    Article  Google Scholar 

  • Crone AJ, Machette MN, Bonilla MG, Lienkaemper JJ (1987) Surface faulting accompanying the Borah Peak earthquake and segmentation of the Lost River fault, central Idaho. Bull Seismol Soc Am 77:739–770

    Google Scholar 

  • Davis BAS, Brewer S, Stevenson AC, Guiot J (2003) The temperature of Europe during the Holocene reconstructed from pollen data. Quatern Sci Rev 22:1701–1716

    Article  Google Scholar 

  • Demoulin A (1996) Clastic dykes in east Belgium: evidence for upper Pleistocene strong earthquakes west of the Lower Rhine Rift segment. J Geol Soc London 153:803–810

    Article  Google Scholar 

  • Dirkzwager JB, Van Wees JD, Cloething AAPL, Geluk MC, Dost B, Beekman F (2000) Geo-mechanical and rheological modelling of upper crustal faults and their near-surface expression in the Netherlands. Global Planet Change 27:67–88

    Article  Google Scholar 

  • Duin EJT, Doornebal JC, Rijkers RHB, Verbeek JW, Wong TE (2006) Subsurface structure of the Netherlands—results of recent onshore and offshore mapping. Geol Mijnbouw 85:245–276

    Article  Google Scholar 

  • Eidelmann A, Reches Z (1992) Fractured pebbles—a new stress indicator. Geology 20:307–310

    Article  Google Scholar 

  • Fliegel G (1922) Der Untergrund der Niederrheinischen Bucht. Abh preuß Geol L-A 92:1–155

    Google Scholar 

  • Friedrich AM, Lee J, Wernicke BP, Sieh K (2004) Geologic context of geodetic data across a Basin and Range normal fault, Crescent Valley, Nevada. Tectonics 23(2): TC2015

  • Geluk MC, Duin EJ, Dusar M, Rijkers R, van den Berg MW, van Rooijen P (1994) Stratigraphy and tectonics of the Roer Valley Graben. Geologij en Mijnbouw 73:129–141

    Google Scholar 

  • Gold RD, Friedrich AM, Kübler S, Salamon M (2017) Apparent late Quaternary fault-slip rate increase in the southern Lower Rhine graben, central Europe. Bull Seismol Soc Am. doi:10.1785/0120160197

  • Görres B (2008) Recent site motions in the lower rhine embayment and the eifel from 15 years of GPS data. Abstract Swiss Geoscience Meeting, Lugano, 1

  • Görres B, Kuhlmann H (2008) How groundwater withdrawal and recent tectonics cause damages of the earth’s surface: Monitoring of 3D site motions by GPS and terrestrial measurements. J Appl Geod 1:223–232

    Google Scholar 

  • Grützner C, Fischer P, Reicherter K (2016) Holocene surface ruptures of the Rurrand Fault, Germany—insights from palaeoseismology, remote sensing and shallow geophysics. Geophys J Int 204:1662–1677

    Article  Google Scholar 

  • Haak HW, Meidow H, Ahorner L, Verbeiren R, Hoang-Trong P, Musson RMV, Henni P, Schenkova Z, Zimova R (1994) The macroseismic map of the Roermond earthquake of April 13, 1992. Geologij en Mijnbouw 73:265–270

    Google Scholar 

  • Hiemstra JF, van den Meer JJM (1997) Pore-water controlled grain fracturing as an indicator for sub glacial shearing in tills. J Glaciol 43:446–454

    Article  Google Scholar 

  • Hinzen KG, Fleischer C (2007) A strong-motion network in the lower rhine embayment (SeFoNiB), Germany. Seismol Res Lett 78:502–511

    Article  Google Scholar 

  • Hinzen KG, Reamer SK (2007) Seismicity, seismotectonics, and seismic hazard in the northern Rhine area. In: Stein S, Mazotti S (eds) Continental intraplate earthquakes: science, hazard, and policy issues. Geological Society of America Special Paper, 425, 225–242

  • Holzapfel E (1904) Beobachtungen im Diluvium der Gegend von Aachen. Jb preuß Geol L-A 24:483–502

    Google Scholar 

  • Hornblow S, Quigley M, Nicol A, Van Dissen R, Wang N (2014) Paleoseismology of the 2010 M w 7.1 Darfield (Canterbury) earthquake source, Greendale Fault, New Zealand. Tectonophysics 637:178–190

    Article  Google Scholar 

  • Houtgast RF, Van Balen RT, Kasse C, Vandenberghe J (2003) Late Quaternary tectonic evolution and postseismic near surface fault displacement along the Geleen Fault (Feldbiss Fault Zone—Roer Valley Rift System, the Netherlands), based on trenching. Geol Mijnbouw 82:177–196

    Article  Google Scholar 

  • Houtgast RF, Van Balen RT, Kasse C (2005) Late quaternary evolution of the Feldbiss Fault (Roer Valley Rift System, the Netherlands) based on trenching, and its potential relation to glacial unloading. Quatern Sci Rev 24:491–510

    Article  Google Scholar 

  • Illies H (1975) Recent and paleo-intraplate tectonics in stable Europe and the Rhinegraben Rift System. Tectonophysics 29:251–264

    Article  Google Scholar 

  • Klostermann J (1992) Das Quartär der Niederrheinischen Bucht: Ablagerungen der letzten Eiszeit am Niederrhein. Geological Survey of Northrhine Westphalia, Krefeld, Germany, pp 1–200

    Google Scholar 

  • Knapp G, Hager H (1980) Geologische Karte der nördlichen Eifel: 1:100.000. Geological Survey of Northrhine-Westphalia, Krefeld

  • Kübler S (2013) Active tectonics of the Lower Rhine Graben (NW Central Europe): based on new paleoseismological constraints and implications for coseismic rupture processes in unconsolidated sediments., Active tectonics of the Lower Rhine Graben (NW Central Europe): based on new paleoseismological constraints and implictions for coseismic rupture processes in unconsolidated sediments. Dissertation, LMU München

  • Kübler S, Streich R, Lück E, Hoffmann M, Friedrich A, Strecker M (2017) Active faulting in a populated low-strain setting (Lower Rhine Graben, Central Europe) identified by geomorphic, geophysical and geological analysis. Geological Society, London, Special Publications, 432, SP432. 411

  • Lee JC, Lu CY, Chu HT, Delcaillau B, Angelier J, Deffontaines B (1996) Active deformation and paleostress analysis in the Pakua anticline area, western Taiwan. Terr Atmos Oceanic Sci 7(4):431–446

    Article  Google Scholar 

  • Lehmann K, Klostermann J, Pelzing R (2001) Paleoseismological Investigations at the Rurrand Fault, Lower Rhine Embayment, Netherlands. J Geosci 80:139–154

    Google Scholar 

  • Leydecker G (2011) Erdbebenkatalog für die Bundesrepublik Deutschland mit Randgebieten für die Jahre 800–2008. Geologisches Jahrbuch, BGR Hannover, E 59

  • Matsuoka N, Murton J (2008) Frost weathering: recent advances and future directions. Permafrost Periglac Process 19:195–210

    Article  Google Scholar 

  • McCalpin JP (2005) Neotectonics of the roubideau creek fault, uncompahgre plateau, Colorado; a preliminary Assessment. In: Geological Society of America Abstracts with Programs, pp. 13

  • McCalpin JP (2009a) Paleoseismology. Int Geophys Ser 95:1–613

    Google Scholar 

  • McCalpin JP (2009b) Paleoseismology in Extensional Tectonic Environments. In: McCalpin J (ed) Paleoseismology. International Geophysics Series, 95, 171–269

  • Meghraoui M, Camelbeeck T, Vanneste K, Brondeel M, Jongmans D (2000) Active faulting and paleoseismology along the Bree fault, Lower Rhine Graben, Belgium. J Geophys Res 105:13809–13841

    Article  Google Scholar 

  • Meghraoui M, Delouis B, Ferry M, Giardini D, Huggenberger P, Spottke I, Granet M (2001) Active normal faulting in the upper Rhine graben and paleoseismic identification of the 1356 Basel earthquake. Science 293:2070–2073

    Article  Google Scholar 

  • Meidow H (1994) Comparison of the macroseismic field of the 1992 Roermond earthquake, the Netherlands, with those of large historical earthquakes in the Lower Rhine Embayment and its vicinity. Neth J Geosci 73:282–289

    Google Scholar 

  • Obermeier SF (1996) Use of liquefaction-induced features for paleoseismic analysis—An overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Eng Geol 44(1–4):1–67

    Article  Google Scholar 

  • Peters G, Buchmann TJ, Connolly P, Van Balen R, Wenzel F, Cloething SAPL (2005) Interplay between tectonic, fluvial and erosional processes along the Western Border Fault of the northern Upper Rhine Graben Germany. Tectonophysics 406:39–66

    Article  Google Scholar 

  • Quitzow HW, Vahlensieck O (1955) Über pleistozäne Gebirgsbildung und rezente Krustenbewegungen in der Niederrheinischen Bucht. Int J Earth Sci 43(1):56–67

    Google Scholar 

  • Ramsey CB (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360

    Article  Google Scholar 

  • Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Cheng H, Edwards RL, Friedrich M (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887

    Article  Google Scholar 

  • Richter D (1962) Die Hochflächen-Treppe der Nordeifel und ihre Beziehungen zum Tertiär und Quartär der Niederrheinischen Bucht. Geol Rundsch 52:376–404

    Article  Google Scholar 

  • Schmedes J, Hainzel S, Reamer SK, Scherbaum F, Hinzen KG (2005) Moment release in the Lower Rhine Embayment, Germany: seismological perspective of the deformation process. Geophys J Int 160:901–909

    Article  Google Scholar 

  • Sessarego JP, Ivakin AN, Ferrand D (2008) Frequency dependence of phase speed, group speed, and attenuation in water-saturated Sand: laboratory experiments. J Ocean Eng 33:359–366

    Article  Google Scholar 

  • Stein S, Friedrich AM (2014) How much can we clear the crystal ball? Astron Geophys 55(2):2–11

    Article  Google Scholar 

  • Stoll RD (2002) Velocity dispersion in water-saturated granular sediment. J Acoust Soc Am 111:785–793

    Article  Google Scholar 

  • Streich R (2003) Geophysical prospecting of suspected Holocene fault activity in the Lower Rhine Embayment, Germany. unpublished Diploma Thesis, University of Potsdam, Germany, 1–125

  • Taylor W, McCalpin J, Snelson C, dePolo C (2010) Quaternary faulting and seismic source characterization in the Las Vegas Metropolitan AreaFinal Technical Report to the US Geological Survey, Award

  • van den Berg MW, Vanneste K, Dost B, Lokhorst A, van Eijk M, Verbeeck K (2002) Paleoseismological investigations along the Peel Boundary Fault: geological setting, site selection and trenching results. Neth J Geosci 81:39–60

    Google Scholar 

  • van Vliet-Lanoë B, Magyari A, Meilliez F (2004) Distinguishing between tectonic and periglacial deformations of quaternary continental deposits in Europe. Global Planet Change 43:103–127

    Article  Google Scholar 

  • Vanneste K, Verbeeck K (2001a) Detailed paleoseismic investigation of the Rurrand Fault in Hambach trench, Germany. Cahiers du Centre Européen de Géodynamique et de Séismologie 18:153–156

    Google Scholar 

  • Vanneste K, Verbeeck K (2001b) Paleoseismological analysis of the Rurrand fault near Jülich, Roer Valley graben, Germany: coseismic or aseismic faulting history? Geol Mijnbouw 80:155–169

    Google Scholar 

  • Vanneste K, Meghraoui M, Camelbeeck T (1999) Late Quaternary earth, quake-related soft-sediment deformation along the Belgian portion of the Feldbiss Fault, Lower Rhine Graben system. Tectonophysics 309:57–79

    Article  Google Scholar 

  • Vanneste K, Verbeeck K, Camelbeeck T, Paulissen E, Meghraoui M, Renardy F, Jongmans D, Frechen M (2001) Surface-rupturing history of the Bree fault scarp, Roer Valley graben: evidence for six events since the late Pleistocene. J Seismol 5:329–359

    Article  Google Scholar 

  • Vanneste K, Verbeeck K, Petermans T (2008) Pseudo-3D imaging of a low-slip-rate, active normal fault using shallow geophysical methods: the Geleen fault in the Belgian Maas River valley. Geophysics 73:B1–B9

    Article  Google Scholar 

  • Vanneste K, Verbeeck K, Moreno DG, Camelbeeck T (2010) A database of seismic sources for the Roer Valley Rift system. In: Proceedings of the European seismological commission 32nd general assembly, September 6–10, Montpellier, France 1

  • Vanneste K, Camelbeeck T, Verbeeck K (2013) A model of composite seismic sources for the Lower Rhine Graben, Northwest Europe. Bull Seismol Soc Am 103:984–1007

    Article  Google Scholar 

  • Verbeeck K, Beatse H, Vanneste K, Renardy F, Van der Meer H, Roy-Chowdhury K, Camelbeeck T (2000) Geomorphic and geophysical reconnaissance of the Reppel and Bocholt faults, NE Belgium, 1–4

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974–1002

    Google Scholar 

  • Ziegler PA (1992) European Cenozoic rift system. Tectonophysics 208:91–111

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for assistance during trench logging provided by Amir Abolghasem, Ramona Baran, Sara Carena, Markus Hoffmann and Stefanie Rieger. We thank Mariano Graf von Spee and Josef Erkens for permitting us to carry out excavation work on their farmland. We thank Christoph Grützner, Klaus Hinzen, Klaus Lehmann, Klaus Reicherter, Martin Salamon, Kris Vanneste, Koen Verbeeck, and Roland Walter for constructive discussions in the field during analysis of deformed sediments. This manuscript greatly benefitted from constructive reviews by Mark Quigley, Christopher DuRoss and an anonymous reviewer. The Untermaubach study site has been selected within the framework of the SAFE Project (Slow Active Faults of Europe) funded by the European Research Council, EU Project No. 2000.220055, awarded to M. Strecker. Trench excavation was funded by DFG-Project (German Science Foundation) ‘Active intraplate deformation in central Europe: Paleoseismology of the Lower Rhine Graben’ Granted to A. Friedrich (DFG FR 1673) and M. Strecker (DFG STR 373-18/3). The airborne LiDAR data were kindly provided by the Geodatenzentrum NRW (© Geobasis NRW 2010). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Kübler.

Additional information

This draft manuscript is distributed solely for purposes of scientific peer review. Its content is deliberative and predecisional, so it must not be disclosed or released by reviewers. Because the manuscript has not yet been approved for publication by the U.S. Geological Survey (USGS), it does not represent any official USGS finding or policy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 499 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kübler, S., Friedrich, A.M., Gold, R.D. et al. Historical coseismic surface deformation of fluvial gravel deposits, Schafberg fault, Lower Rhine Graben, Germany. Int J Earth Sci (Geol Rundsch) 107, 571–585 (2018). https://doi.org/10.1007/s00531-017-1510-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-017-1510-9

Keywords

Navigation