Skip to main content

Advertisement

Log in

Depositional environment and origin of the Lilaozhuang Neoarchean BIF-hosted iron–magnesite deposit on the southern margin of the North China Craton

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Neoarchean Lilaozhuang iron–magnesite deposit is located in the middle of the Huoqiu banded iron formation (BIF) ore belt in Anhui Province on the southern margin of the North China Craton. The Huoqiu BIF is the unique one that simultaneously develops quartz-type, silicate-type, and carbonate-type magnetite in the region. The Lilaozhuang deposit is characterized by magnesium-rich carbonate (magnesite) in magnetite ores. The BIF-hosted iron ores include mainly of silicate type and carbonate type, with a small amount of quartz type, which chiefly exhibit banded and massive structure, with minor disseminated structure. The magnesite ores occur as crystal-like bright white and exhibits massive structure. The Y/Ho ratio and REY pattern of both iron and magnesite ores are similar to that of seawater, while Eu shows positive anomaly, which is the sign of seafloor hydrothermal mixture. These features suggest that ore-forming materials of iron and magnesium in the Lilaozhuang deposit are mainly from the mixture of seafloor hydrothermal and seawater. Both ores do not exhibit negative Ce anomaly, which indicates that the deposit was formed in an environment showing a lack of oxygen. C–O isotopic compositions indicate that magnesite ore has been reformed by metamorphism of low amphibolite facies and later hydrothermal alteration. Based on the comprehensive analysis, authors suggest that iron and magnesite ores in the Lilaozhuang deposits formed in a confined sea basin on continental margin and was influenced by later complex geological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • 313 Geological Team (1991) Report of regional 1:50,000 geological survey in the Huoqiu iron ore field

  • 313 Geological Team (1995) A final report of the Huoqiu iron ore field. Anhui Bur Geol Miner Resour (2):1–120

  • Alexander BW, Bau M, Andersson P, Dulski P (2008) Continentally-derived solutes in shallow Archean seawater: rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa. Geochim Cosmochim Acta 72(2):378–394

    Article  Google Scholar 

  • Alibert C, McCulloch MT (1993) Rare earth element and neodymium isotopic compositions of the banded iron-formations and associated shales from Hamersley, Western Australia. Geochim Cosmochim Acta 57(1):187–204

    Article  Google Scholar 

  • Alibo DS, Nozaki Y (1999) Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochim Cosmochim Acta 63(3):363–372

    Article  Google Scholar 

  • Armstrong HA, Owen AW, Floyd JD (1999) Rare earth geochemistry of Arenig cherts from the Ballantrae Ophiolite and Leadhills Imbricate Zone, southern Scotland: implications for origin and significance to the Caledonian Orogeny. J Geol Soc 156(3):549–560

    Article  Google Scholar 

  • Baker AJ, Fallick AE (1989a) Evidence from Lewisian limestones for isotopically heavy carbon in two-thousand-million-year-old sea water. Nature 337(6205):352–354. doi:10.1038/337352a0

    Article  Google Scholar 

  • Baker AJ, Fallick AE (1989b) Heavy carbon in two-billion-old marbles from Lofoten-Vesteralen, Norway: implications for the Precambrian carbon cycle. Geochim Cosmochim Acta 53(5):1111–1115

    Article  Google Scholar 

  • Banner JL, Hanson GN (1990) Calculation of simultaneous isotopic and trace element variations during water–rock interaction with applications to carbonate diagenesis. Geochim Cosmochim Acta 54(11):3123–3137

    Article  Google Scholar 

  • Basta FF, Maurice AE, Fontboté L, Favarger PY (2011) Petrology and geochemistry of the banded iron formation (BIF) of Wadi Karim and Um Anab, Eastern Desert, Egypt: implications for the origin of Neoproterozoic BIF. Precambr Res 187(3):277–292

    Article  Google Scholar 

  • Bau M (1993) Effects of syn-depositional and postdepositional processes on the rareearth element distribution in Precambrian iron-formations. Eur J Mineral 5:257–267

    Article  Google Scholar 

  • Bau M, Dulski P, Moller P (1995) Yttrium and holmium in South Pacific seawater: vertical distribution and possible fractionation mechanisms. Chem Erde 55(1):1–15

    Google Scholar 

  • Bau M, Dulski P (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambr Res 79(1):37–55

    Article  Google Scholar 

  • Bau M, Dulski P (1999) Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chem Geol 155(1):77–90

    Article  Google Scholar 

  • Bau M, Höhndorf A, Dulski P, Beukes NJ (1997) Sources of rare-earth elements and iron in Paleoproterozoic iron-formations from the Transvaal Supergroup, South Africa: evidence from neodymium isotopes. J Geol 105(1):121–129

    Article  Google Scholar 

  • Bekker A, Kaufman AJ, Karhu JA, Beukes NJ, Swart QD, Coetzee LL, Eriksson KA (2001) Chemostratigraphy of the Paleoproterozoic Duitschland Formation, South Africa: implications for coupled climate change and carbon cycling. Am J Sci 301(3):261–285

    Article  Google Scholar 

  • Bekker A, Kaufman AJ, Karhu JA, Eriksson KA (2005) Evidence for Paleoproterozoic cap carbonates in North America. Precambr Res 137(3):167–206

    Article  Google Scholar 

  • Bekker A, Slack JF, Planavsky N, Krapež B, Hofmann A, Konhauser KO, Rouxel OJ (2010) Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ Geol 105(3):467–508

    Article  Google Scholar 

  • Bolhar R, Van Kranendonk MJ (2007) A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates. Precambr Res 155(3):229–250

    Article  Google Scholar 

  • Bolhar R, Kamber BS, Moorbath S, Fedo CM, Whitehouse MJ (2004) Characterisation of early Archaean chemical sediments by trace element signatures. Earth Planet Sci Lett 222(1):43–60

    Article  Google Scholar 

  • Bolhar R, Van Kranendonk MJ, Kamber BS (2005) A trace element study of siderite–jasper banded iron formation in the 3.45 Ga Warrawoona Group, Pilbara Craton—formation from hydrothermal fluids and shallow seawater. Precambr Res 137(1):93–114

    Article  Google Scholar 

  • Chen YJ, Liu CQ, Chen HY, Zhang ZJ, Li C (2000) Carbon isotope geochemistry of graphite deposits and ore-bearing khondalite series in North China: implications for several geoscientific problems. Acta Petrologica Sinica 16(2):233–244

    Google Scholar 

  • Cheng YC (1957) Problems on the genesis of the high-grade ore in the pre-Sinian (pre-Cambrian) banded iron ore deposits of the Anshan-type of Liaoning and Shantung provinces. Acta Geol Sin 37(2):153–180

    Google Scholar 

  • Cheng YQ (1998) Geological research. In: Proceedings of north China platform in early Precambrian, Beijing

  • Dai YP, Zhang LC, Cl Wang, Liu L, Cui ML, Zhu MT, Xiang P (2012) Genetic type, formation age and tectonic setting of the Waitoushan banded iron formation, Benxi, Liaoning Province. Acta Petrol Sin 28(11):3574–3594

    Google Scholar 

  • Dai YP, Zhang LC, Zhu MT, Wang CL, Liu L, Xiang P (2014) The composition and genesis of the Mesoarchean Dagushan banded iron formation (BIF) in the Anshan area of the North China Craton. Ore Geol Rev 63:353–373

    Article  Google Scholar 

  • Danielson A, Möller P, Dulski P (1992) The europium anomalies in banded iron formations and the thermal history of the oceanic crust. Chem Geol 97(1):89–100

    Article  Google Scholar 

  • Department of Land and Resources of Anhui Province. Geological Survey of Anhui Province (2004) Iron ore resources planning of Huoqiu, Anhui Province. The archives of Department of Land and Resources of Anhui Province

  • Douville E, Bienvenu P, Charlou JL, Donval JP, Fouquet Y, Appriou P, Gamo T (1999) Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochim Cosmochim Acta 63(5):627–643

    Article  Google Scholar 

  • Gross GA (1980) A classification of iron formations based on depositional environments. Can Mineral 18(2):215–222

    Google Scholar 

  • Gross GA (1983) Tectonic systems and the deposition of iron-formation. Precambr Res 20(2–4):171–187

    Article  Google Scholar 

  • Gross GA (1996) Algoma-type previous termiron-formation, Selected British Columbia Mineral Deposits Profiles 2. British Columbia Ministry of Employment and Investment Open File, Ottawa, pp 25–28

    Google Scholar 

  • Huang H, Zhang LC, Liu XF, Lee HZ, Liu L (2013) Geological and geochemical characteristics of the Lee Laozhuang iron mine in Huoqiu iron deposit: implications for sedimentary environment. Acta Petrol Sin 29(7):2593–2605

    Google Scholar 

  • Huston DL, Logan GA (2004) Barite, BIFs and bugs: evidence for the evolution of the Earth’s early hydrosphere. Earth Planet Sci Lett 220(1):41–55

    Article  Google Scholar 

  • Isley AE (1995) Hydrothermal plumes and the delivery of iron to banded iron formation. J Geol 103(2):169–185

    Article  Google Scholar 

  • James HL (1954) Sedimentary facies of iron-formation. Econ Geol 49(3):235–293

    Article  Google Scholar 

  • James HL (1983) Distribution of banded iron-formation in space and time. Dev Precambr Geol 6:471–490

    Article  Google Scholar 

  • Jiang SY, Chen CX, Chen YQ, Jiang YH, Dai BZ, Ni P (2004) Geochemistry and genetic model for the giant magnesite deposits in the eastern Liaoning province China. Acta Petrol Sin 20(4):765–772

    Google Scholar 

  • Khan RMK, Sharma SD, Patil DJ, Naqvi SM (1996) Trace, rare-earth element, and oxygen isotopic systematics for the genesis of banded iron-formations: evidence from Kushtagi schist belt, Archaean Dharwar Craton, India. Geochim Cosmochim Acta 60(17):3285–3294

    Article  Google Scholar 

  • Klein C (2005) Some Precambrian banded iron-formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. Am Mineral 90(10):1473–1499

    Article  Google Scholar 

  • Lan TG, Fan HR, Hu FF, Yang KF, Cai YC, Liu YS (2014) Depositional environment and tectonic implications of the Paleoproterozoic BIF in Changyi area, eastern North China Craton: evidence from geochronology and geochemistry of the metamorphic wallrocks. Ore Geol Rev 61:52–72

    Article  Google Scholar 

  • Liu L, Yang XY (2015) Temporal, environmental and tectonic significance of the Huoqiu BIF, southeastern North China Craton: geochemical and geochronological constraints. Precambr Res 261:217–233

    Article  Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Rev Mineral Geochem 21(1):169–200

    Google Scholar 

  • Melezhik VA, Gorokhov IM, Fallick AE, Gjelle S (2001a) Strontium and carbon isotope geochemistry applied to dating of carbonate sedimentation: an example from high-grade rocks of the Norwegian Caledonides. Precambr Res 108(3):267–292

    Article  Google Scholar 

  • Melezhik VA, Gorokhov IM, Kuznetsov AB, Fallick AE (2001b) Chemostratigraphy of Neoproterozoic carbonates: implications for ‘blind dating’. Terra Nova 13(1):1–11

    Article  Google Scholar 

  • Meschede M (1986) A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb–Zr–Y diagram. Chem Geol 56(3):207–218

    Article  Google Scholar 

  • Murray RW, Ten Brink MRB, Gerlach D, Russ GP, Jones DL (1991) Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: assessing REE sources to fine-grained marine sediments. Geochim Cosmochim Acta 55(7):1875–1895

    Article  Google Scholar 

  • Pecoits E, Gingras MK, Barley ME, Kappler A, Posth NR, Konhauser KO (2009) Petrography and geochemistry of the Dales Gorge banded iron formation: paragenetic sequence, source and implications for palaeo-ocean chemistry. Precambr Res 172(1):163–187

    Article  Google Scholar 

  • Planavsky N, Bekker A, Rouxel OJ, Kamber B, Hofmann A, Knudsen A, Lyons TW (2010) Rare Earth Element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: new perspectives on the significance and mechanisms of deposition. Geochim Cosmochim Acta 74(22):6387–6405

    Article  Google Scholar 

  • Ray JS, Veizer J, Davis WJ (2003) C, O, Sr and Pb isotope systematics of carbonate sequences of the Vindhyan Supergroup, India: age, diagenesis, correlations and implications for global events. Precambr Res 121(1):103–140

    Article  Google Scholar 

  • Sang BL, Xing FM, Chen YZ (1981) The Precambrian metamorphic iron ore characteristics and prospecting. Anhui Inst Geol Sci 1:10–20

    Google Scholar 

  • Schidlowski M (1988) A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333(6171):313–318

    Article  Google Scholar 

  • Schidlowski M (1998) Beginnings of terrestrial life: problems of the early record and implications for extraterrestrial scenarios. Paper presented at the SPIE’s international symposium on optical science, engineering, and instrumentation

  • Schidlowski M, Eichmann R, Junge CE (1975) Precambrian sedimentary carbonates: carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget. Precambr Res 2(1):1–69

    Article  Google Scholar 

  • Shen BF, Hui Luo, Li SB, Li JJ, Peng XL, Hu XD, Mao DB, Liang RX (1994) Geology and metallization of Archean greenstone belts in north China platform. Geological Publishing House, Beijing

    Google Scholar 

  • Shen BF, Zhai AM, Chen WL, Yang CL, Hu XD, Cao XL, Gong XH (2006) The Precambrian mineralization of China. Geological Publishing House, Beijing

    Google Scholar 

  • Shen QH, Song HX, Zhao ZR (2009) Characteristics of rare earth elements and trace elements in Hanwang Neo-Archaean banded iron formations, Shandong Province. Acta Geosci Sin 30(6):693–699

    Google Scholar 

  • Stakes DS, O’Neil JR (1982) Mineralogy and stable isotope geochemistry of hydrothermally altered oceanic rocks. Earth Planet Sci Lett 57(2):285–304

    Article  Google Scholar 

  • Sun YB (2007) Geological characteristics and metallogenic types of the Lilaozhuang iron–magnesite deposit in Huoqiu, Anhui. Mineral Resour Geol 21(5):532–537

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42(1):313–345

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific, USA

    Google Scholar 

  • Veizer J, Clayton RN, Hinton RW (1992) Geochemistry of Precambrian carbonates: IV. Early Paleoproterozoic (2.25 ± 0.25 Ga) seawater. Geochim Cosmochim Acta 56(3):875–885

    Article  Google Scholar 

  • Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161(1):59–88

    Article  Google Scholar 

  • Wada H, Suzuki K (1983) Carbon isotopic thermometry calibrated by dolomite–calcite solvus temperatures. Geochim Cosmochim Acta 47(4):697–706

    Article  Google Scholar 

  • Wan YS, Liu DY, Wang SY, Zhao X, Dong CY, Zhou HY, Yin XY, Yang CX, Gao LZ (2009) Early Precambrian crustal evolution in the Dengfeng area, Henan province (eastern China): constraints from geochemistry and SHRIMP U–Pb zircon dating. Acta Geol Sinica 83(7):982–999

    Google Scholar 

  • Wang CL, Zhang LC, Lan CY, Dai YP (2014) Rare earth element and yttrium compositions of the Paleoproterozoic Yuanjiacun BIF in the Lüliang area and their implications for the Great Oxidation Event (GOE). Sci China Earth Sci 57(10):2469–2485

    Article  Google Scholar 

  • Yang XY, Wang BH, Du ZB, Wang QC, Wang YX, Tu ZB, Zhang WL, Sun WD (2012) On the metamorphism of the Huoqiu Group, forming ages and mechanism of BIF and iron deposit in the Huoqiu region, southern margin of North China carton

  • Yang X, Liu L, Lee IS, Wang B, Du ZB, Wang QC, Wang YX, Sun WD (2014) A review on the Huoqiu banded iron formation (BIF), southeast margin of the North China Craton: genesis of iron deposits and implications for exploration. Ore Geol Rev 63(1):418–443

    Article  Google Scholar 

  • Zhai MG, Windley BF (1990) The Archaean and early Proterozoic banded iron formations of North China: their characteristics, geotectonic relations, chemistry and implications for crustal growth. Precambr Res 48(3):267–286

    Article  Google Scholar 

  • Zhai MG, Windley BF, Sills JD (1990) Archaean gneisses, amphibolites and banded iron-formations from the Anshan area of Liaoning Province, NE China: their geochemistry, metamorphism and petrogenesis. Precambr Res 46(3):195–216

    Article  Google Scholar 

  • Zhang J, Nozaki Y (1996) Rare earth elements and yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean. Geochim Cosmochim Acta 60(23):4631–4644

    Article  Google Scholar 

  • Zhang LC, Zhang XJ, Cui ML, Dai YP, Wang CL, Liu L, Wan YS (2011) Formation age and tectonic environment of BIF iron ore in North China Craton. Acta Mineral Sin 31(2):666–667

    Google Scholar 

  • Zhang LC, Zhai MG, Wan YS, Guo JH, Dai YP, Wang CL, Li Liu (2012) Study of the Precambrian BIF-iron deposits in the North China Craton: progresses and questions. Acta Petrol Sin 28(11):3431–3445

    Google Scholar 

  • Zhao ZH (1997) Geochemistry of trace elements. Science Press, Beijing

    Google Scholar 

  • Zhao GC, Sun M, Wilde SA, Sanzhong L (2005) Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambr Res 136(2):177–202

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Yang Xiaoyong and 313 geological team from Bureau of Geology and Mineral Resources Exploration of Anhui Province for supporting and guiding in the fieldwork. We thank Dr. Zhu Mingtian for discussion and guidance in writing this paper. Measurements and tests are carried out by rock and mineral analysis laboratory, trace elements laboratory, stable isotope laboratory at Institute of Geology and Geophysics, Chinese Academy of Sciences. This research was supported by the State Key Basic Research Development Program of China (2012CB416601) and the National Natural Science Foundation of China (NSFC; grant numbers 41572076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LianChang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Zhang, L., Fabre, S. et al. Depositional environment and origin of the Lilaozhuang Neoarchean BIF-hosted iron–magnesite deposit on the southern margin of the North China Craton. Int J Earth Sci (Geol Rundsch) 106, 1753–1772 (2017). https://doi.org/10.1007/s00531-016-1384-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-016-1384-2

Keywords

Navigation