Skip to main content
Log in

Investigating fossil hydrothermal systems by means of fluid inclusions and stable isotopes in banded travertine: an example from Castelnuovo dell’Abate (southern Tuscany, Italy)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Southern Tuscany (Italy) hosts geothermal anomalies with associated widespread CO2 gas-rich manifestations and active travertine-deposing thermal springs. Geothermal anomalies have been active since the Late Miocene and have led to the formation of widespread Late Miocene–Pleistocene travertine deposits and meso- and epithermal mineralizations. This study investigates the travertine deposit exposed in the Castelnuovo dell’Abate area of southern Tuscany. Here, a fissure-ridge type travertine deposit and its feeding conduits, currently filled with banded calcite veins (i.e. banded travertine), represent a spectacular example of fossil hydrothermal circulation in the peripheral area of the exploited Monte Amiata geothermal field. The Castelnuovo dell’Abate travertine deposit and associated calcite veins were analysed to establish the characteristics of the parent hydrothermal fluids, and the age of this circulation. The focus of the study was on fluid inclusions, rarely considered in travertine studies, but able to provide direct information on the physico-chemical characteristics of the original fluid. Uranium–thorium geochronological data provided further constraints on the: (1) age of tectonic activity; (2) age of the hydrothermal circulation; and (3) evolution of the Monte Amiata geothermal anomaly. Results indicate that brittle deformation (NW- and SE-trending normal to oblique-slip faults) was active during at least the Middle Pleistocene and controlled a hydrothermal circulation mainly characterized by fluids of meteoric origin, and as old as 300–350 ka. This is the oldest circulation documented to date in the Monte Amiata area. The fluid chemical composition is comparable to that of fluids currently exploited in the shallow reservoir of the Monte Amiata geothermal field, therefore suggesting that fluid composition has not changed substantially over time. These fluids, however, have cooled by about 70 °C in the last 300–350 ka, corresponding to a cooling rate of the Monte Amiata geothermal area of about 20 °C 100 ka−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Altunel E, Hancock PL (1993) Morphology and structural setting of Quaternary travertines at Pamukkale, Turkey. Geol J 28:335–346

    Article  Google Scholar 

  • Altunel E, Karabacak V (2005) Determination of horizontal extension from fissure-ridge travertines: a case study from the Denizli Basin, southwestern Turkey. Geodin Acta 18:333–342

    Article  Google Scholar 

  • Arnórsson S (1989) Deposition of calcium carbonate minerals from geothermal waters—theoretical considerations. Geothermics 18:33–39

    Article  Google Scholar 

  • Baietto A, Giudetti G, Governi S, Fusani L, Salvatici E (2008) Shallow versus deep thermal circulations at Bagni di S. Filippo (Mt. Amiata, Tuscany, Italy). 70th EAGE conference and exhibition—workshops and fieldtrips. 9–12 June 2008, Rome. doi:10.3997/2214-4609.201405054

  • Barberi F, Buonasorte G, Cioni R, Fiordelisi A, Foresi L, Laccarino S, Laurenzi MA, Sbrana A, Vernia L, Villa IM (1994) Plio-Pleistocene geological evolution of the geothermal area of Tuscany and Latium. Mem Descr Carta Geol Ital 49:77–134

    Google Scholar 

  • Barbieri M, Masi U, Tolomeo L (1976) Distribuzione dello stronzio nei gessi e nelle anidriti delle formazioni evapouritiche dell’Italia centrale. Rend. Soc. Ital. Mineral. Petrol. 32:551–560

    Google Scholar 

  • Bartole R (1995) The North Tyrrhenian-Northern Apennines post-collisional system: constraints for a geodynamic model. Terra Nova 7:7–30

    Article  Google Scholar 

  • Batini F, Brogi A, Lazzarotto A, Liotta D, Pandeli E (2003) Geological features of Larderello-Travale and Mt. Amiata geothermal areas (southern Tuscany, Italy). Episodes 26:239–244

    Google Scholar 

  • Bertini G, Cappetti G, Dini I, Lovari F (1995) Deep drilling results and updating of geothermal knowledge of the Monte Amiata area. In: Proceedings of the world geothermal congress 1995, Florence, pp 1283–1286

  • Bigazzi G, Giuliani O, Bonadonna FP, Ghezzo C, Radicati Di Brozolo F, Rita F (1981) Geochronological study of the Monte Amiata Lavas (Central Italy). Bull Volcanol 44:455–465

    Article  Google Scholar 

  • Bodnar RJ, Vytik MO (1994) Interpretation of microthermometric data for H2O–NaCl fluid inclusions. In: Vivo BD, Frezotti ML (eds) Fluid inclusions in minerals: methods and applications. Virginia Polytechnic Institute, Blacksburg, pp 117–130

    Google Scholar 

  • Bosi C, Messina P, Rosati M, Sposato A (1996) Età dei travertini della Toscana meridionale e relative implicazioni tettoniche. Mem Soc Geol It 51:239–304

    Google Scholar 

  • Bottinga Y (1969) Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite–carbon dioxide–calcite–methane–hydrogen–water-vapour. Geochim Cosmochim Acta 33:49–64

    Article  Google Scholar 

  • Brasier AT (2011) Searching for travertines, calcretes and speleothems in deep time: processes, appearances, predictions and the impact of plants. Earth Sci Rev 104:213–239

    Article  Google Scholar 

  • Brogi A (2008) The structure of the Monte Amiata volcano geothermal area (Northern Apennines, Italy): Neogene–Quaternary compression versus extensions. Int J Earth Sci (Geol Rundsch) 97:677–703

    Article  Google Scholar 

  • Brogi A, Capezzuoli E (2009) Travertine deposition and faulting: the fault-related travertine fissure-ridge at Terme S. Giovanni, Rapolano Terme (Italy). Int J Earth Sci (Geol Rundsch) 98:931–947

    Article  Google Scholar 

  • Brogi A, Lazzarotto A, Liotta D, Ranalli G (2005) Crustal structures in the geothermal areas of southern Tuscany (Italy): insights from the CROP 18 deep seismic reflection lines. J Volcanol Geoth Res 148:60–80

    Article  Google Scholar 

  • Brogi A, Capezzuoli E, Aqué R, Branca M, Voltaggio M (2010a) Studying travertines for neotectonics investigations: Middle–LatePleistocene syn-tectonic travertine deposition at Serre di Rapolano (Northern Apennines, Italy). Int J Earth Sci (Geol Rundsch) 99:1383–1398

    Article  Google Scholar 

  • Brogi A, Liotta D, Meccheri M, Fabbrini L (2010b) Transtensional shear zones controlling volcanic eruptions: the Middle Pleistocene Monte Amiata volcano (inner Northern Apennines, Italy). Terra Nova 22:137–146

    Article  Google Scholar 

  • Brogi A, Capezzuoli E, Buracchi E, Branca M, Voltaggio M (2012) Tectonic control on travertine and calcareous tufa deposition in a low-temperature geothermal system (Sarteano, Central Italy). J Geol Soc 169:461–476

    Article  Google Scholar 

  • Brogi A, Capezzuoli E, Martini I, Picozzi M, Sandrelli F (2014) Late Quaternary tectonics in the inner Northern Apennines (Siena Basin, southern Tuscany, Italy) and their seismotectonic implication. J Geodyn 76:25–45

    Article  Google Scholar 

  • Brogi A, Liotta D, Ruggieri G, Capezzuoli E, Meccheri M, Dini A (2015) An overview on the characteristics of geothermal carbonate reservoirs in southern Tuscany. It J Geosc. doi:10.3301/IJG.2014.41

    Google Scholar 

  • Brunet C, Monie P, Jolivet L, Cadet JP (2000) Migration of compression and extension in the Tyrrhenian sea, insights from 40Ar/39Ar ages on micas along a transect from Corsica to Tuscany. Tectonophysics 32:127–155

    Article  Google Scholar 

  • Buttinelli M, De Rita D, Cremisini C, Cimarelli C (2011) Deep explosive focal depths during maar forming magmatic hydrothermal eruption: Baccano Crater, Central Italy. Bull Volcanol 73:899–915

    Article  Google Scholar 

  • Cadoux A, Pinti DL (2009) Hybrid character and pre-eruptive events of Mt Amiata volcano (Italy) inferred from geochronological, petro-geochemical and isotopic data. J Volcanol Geoth Res 179:169–190

    Article  Google Scholar 

  • Capezzuoli E, Brogi A, Ricci M, Bertini A (2011) Travertine and calcareous tufa in southern Tuscany (Central Italy). Field Trip Guide book of ISTT (International school of travertine and tufa). Ed. Il Campano, Pisa, p 66

  • Capezzuoli E, Gandin A, Pedley M (2014) Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: the state of the art. Sedimentology 61:1–21

    Article  Google Scholar 

  • Carmignani L, Decandia FA, Disperati L, Fantozzi PL, Lazzarotto A, Liotta D, Meccheri M (1994) Tertiary extensional tectonics in Tuscany (Northern Apennines, Italy). Tectonophysics 238:295–315

    Article  Google Scholar 

  • Carmignani L, Decandia FA, Disperati L, Fantozzi PL, Lazzarotto A, Liotta D, Oggiano G (1995) Relationships between the Sardinia-Corsica-Provençal domain and the northern Apennines. Terranova 7:128–137

    Google Scholar 

  • Chafetz HS, Rush PF, Utech NM (1991) Microenvironmental controls on mineralogy and habit of CaCO3 precipitates: an example from an active travertine system. Sedimentology 38:107–126

    Article  Google Scholar 

  • Cheng H, Edwards RL, Hoff J, Gallup CD, Richards DA, Asmerom Y (2000) The half-lives of uranium-234 and thorium-230. Chem Geol 169:17–33

    Article  Google Scholar 

  • Clark TR, Zhao J-X, Feng Y-X, Done TJ et al (2012) Spatial variability of initial 230Th/232Th in modern Porites from the inshore region of the Great Barrier Reef. Geochim Cosmochim Acta 78:99–118

    Article  Google Scholar 

  • Cortecci G, Lupi L (1994) Carbon, oxygen and strontium isotope geochemistry of carbonates rocks from the Tuscan Nappe, Italy. Mineral Petrol Acta 37:63–80

    Google Scholar 

  • Costagliola P, Benvenuti MM, Benvenuti MG, Di Benedetto F, Lattanzi P (2010) Quaternary sediment geochemistry as a proxy for toxic element source: a case study of arsenic in the Pecora Valley (southern Tuscany, Italy). Chem Geol 270:80–89

    Article  Google Scholar 

  • Costagliola P, Bardelli F, Benvenuti M, Di Bendetto F, Romanelli M, Paolieri M, Rimondi V, Vaggelli G (2013) Arsenic bearing-calcite in natural travertines: evidence from sequential extraction, μ-XAS and μ-XRF. Environ Sci Technol 47:6231–6238

    Google Scholar 

  • Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149

    Article  Google Scholar 

  • De Filippis L, Faccenna C, Billi A, Anzalone E, Brilli M, Soligo M, Tuccimei P (2013) Plateau versus fissure ridge travertines from Quaternary geothermal springs of Italy and Turkey: interactions and feedbacks between fluid discharge, paleoclimate, and tectonics. Earth-Sci Rev 123:35–52

    Article  Google Scholar 

  • De Paola N, Collettini C, Faulkner DR, Trippetta F (2008) Fault zone architecture and deformation processes within evaporitic rocks in the upper crust. Tectonics 47:TC4017

  • Del Moro A, Puxeddu M, Radicati di Bronzolo F, Villa IM (1982) Rb-Sr and K-Ar ages on minerals at temperatures of 3000–400°C from deep wells in the Larderello geothermal field (Italy). Contrib Mineral Petrol 81:340–349

    Article  Google Scholar 

  • Della Vedova B, Bellani S, Pellis G, Squarci P (2001) Deep temperatures and surface heat flow distribution. In: Vai GB, Martini IP (eds) Anatomy of an orogen: the Apennines and adjacent Mediterranean basins. Kluwer, Dordrecht, pp 65–76

    Chapter  Google Scholar 

  • Dessau G (1968) Il berillio e l’arsenico nei travertini dell’Italia Centrale. Atti Soc Tosc Sci Nat 75:690–711

    Google Scholar 

  • Di Benedetto F, Costagliola P, Benvenuti M, Lattanzi P, Romanelli M, Tanelli G (2006) Arsenic incorporation in natural calcite lattice: evidence from electron spin echo spectroscopy. Earth Planet Sc Lett 246:458–465

    Article  Google Scholar 

  • Di Benedetto F, Montegrossi G, Minissale A, Pardi LA, Romanelli M, Tassi F, Delgado Huertas A, Pampin EM, Vaselli O, Borrini D (2011) Biotic and inorganic control on travertine deposition at Bullicame 3 spring (Viterbo, Italy): a multidisciplinary approach. Geochim Cosmochim Acta 75:4441–4455

    Article  Google Scholar 

  • Diamond LW (2003) Systematics of H2O inclusions. In: Samson IM, Anderson AJ, Marshall DD (eds) Fluid inclusions: analysis and interpretation. Mineralogical Association of Canada, Short Course 32, pp 55–80

  • Dini A, Gianelli G, Puxeddu M, Ruggieri G (2005) Origin and evolution of Pliocene–Pleistocene granites from the Larderello geothermal field (Tuscan Magmatic Province Italy). Lithos 81:1–31

    Article  Google Scholar 

  • Dogan M, Dogan AU (2007) Arsenic mineralization, source, distribution, and abundance in the Kutahya region of the western Anatolia, Turkey. Environ Geochem Health 29:119–129

    Article  Google Scholar 

  • Donnini M, Chiodini G, Avino R, Baldini A, Cardellini C, Caliro S, Frondini F, Granieri D, Morgantini N (2007) Carbon dioxide degassing at Bagni san Filippo (Tuscany, Italy): quantification and modelling of gas release. Geophys Res Abstr 9, EGU2007-A-02954

  • DST-Dipartimento di Scienze della Terra Università di Firenze - Gruppo di Geochimica (2010) Indagine geochimica ed isotopica delle sorgenti termo- ed oligominerali dell’area amiatina. Regione Toscana. Accordo di Programma Quadro Ricerca e trasferimento tecnologico per il sistema produttivo, 45 pp (in Italian)

  • Duan Z, Sun R (2003) An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem Geol 193:257–271

    Article  Google Scholar 

  • Duchi V, Minissale A, Paolieri M, Prati F, Valori A (1992) Chemical relationship between discharging fluids in the Siena-Radicofani graben and the deep fluids produced by the geothermal fields of Mt. Amiata, Torre Alfina and Latera, central Italy. Geothermics 21:401–413

    Article  Google Scholar 

  • Edwards RL, Chen JH, Wasserburg GJ (1987) 238 U-234 U-230 Th-232Th systematics and the precise measurement of time over the past 500,000 years. Earth Planet Sci Lett 81:175–192

    Article  Google Scholar 

  • El Desouky H, Soete J, Claes H, Özkul M, Vanhaecke F, Swennen R (2015) Novel applications of fluid inclusions and isotope geochemistry in unravelling the genesis of fossil travertine systems. Sedimentology 62:27–57

    Article  Google Scholar 

  • Faccenna C, Soligo M, Billi A, De Filippis L, Funiciello R, Rossetti C, Tuccimei P (2008) Late Pleistocene depositional cycles of the Lapis Tiburtinus travertine (Tivoli, Central Italy): possible influence of climate and fault activity. Global Planet Change 63:293–308

    Article  Google Scholar 

  • Fancelli R, Nuti S (1975) Studio sulle acque termali e minerali della parte orientale della provincia di Siena. Boll. Soc It 94:135–155

    Google Scholar 

  • Ferrari L, Conticelli S, Burlamacchi L, Manetti P (1996) Volcanological evolution of the Monte Amiata, southern Tuscany: new geological and petrochemical data. Acta Vulcanol 8:41–56

    Google Scholar 

  • Flügel E (2004) Microfacies of carbonate rocks. Analysis, interpretation and application. Springer, New York

    Google Scholar 

  • Ford TD, Pedley HM (1996) A review of tufa and travertine deposits of the world. Earth Sci Rev 41:117–175

    Article  Google Scholar 

  • Fornaca Rinaldi G (1968) 230Th/234Th dating of cave concretions. Earth Planet Sci Lett 5:120–122

    Article  Google Scholar 

  • Fouke BW, Farmer JD, Des Marais DJ, Pratt L, Sturchio NC, Burns PC, Discipulo MK (2000) Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, U.S.A.). J Sedim Res 70:565–585

    Article  Google Scholar 

  • Fournier RO (1985) Carbonate transport and deposition in the epithermal environment. In: Berger BR, Bethke PM (eds) Geology and geochemistry of epithermal systems, reviews in economic geology, vol 2, pp 63–71

  • Friedman I (1970) Some investigations on the deposition of travertine from hot springs—I. The isotopic chemistry of a travertine-depositing spring. Geochim Cosmochim Acta 34:1303–1315

    Article  Google Scholar 

  • Friedman I, O’Neil JR (1977) Compilation of stable isotope fractionation factors of geochemical interest. In: Fleischer M (ed) Data of geochemistry, 6th edn. US Geological Survey Professional Paper 440-KK, KK1–KK12

  • Fritz P (1965) Composizione isotopica dell’ossigeno e del carbonio nei travertini della Toscana. Boll Geofis Teor Appl 7:25–30

    Google Scholar 

  • Frondini F, Caliro S, Cardellini C, Chiodini G, Morgantini N, Parello F (2008) Carbon dioxide degassing from Tuscany and Northern Latium (Italy). Global Planet Change 61:89–102

    Article  Google Scholar 

  • Frondini F, Caliro S, Cardellini C, Chiodini G, Morgantini N (2009) Carbon dioxide degassing and thermal energy release in the Monte Amiata volcanic-geothermal area (Italy). Appl Geochem 24:860–875

    Article  Google Scholar 

  • Gandin A, Capezzuoli E (2014) Travertine: distinctive depositional fabrics of carbonates from thermal spring systems. Sedimentology 61:264–290

    Article  Google Scholar 

  • Gasparrini M, Ruggieri G, Brogi A (2013) Diagenesis versus hydrothermalism and fluid–rock interaction within the Tuscan Nappe of the Monte Amiata CO2-rich geothermal area (Italy). Geofluids 13:159–179

    Article  Google Scholar 

  • Gianelli G (2008) A comparative analysis of the geothermal fields of Larderello and Mt. Amiata, Italy. In: Ueckermann HI (ed) Geothermal energy research trends. Nova Science, New York, pp 59–85

    Google Scholar 

  • Gianelli G, Puxeddu M, Batini F, Bertini G, Dini I, Pandeli E, Nicolich R (1988) Geological model of a young volcanoplutonic system: the geothermal region of Monte Amiata (Tuscany, Italy). Geothermics 17:719–734

    Article  Google Scholar 

  • Gibert RO, Taberner C, Sáez A, Giralt S, Alonso RN, Edwards RL, Pueyo JJ (2009) Igneous origin of CO2 in ancient and recent hot-spring waters and travertines from the northern Argentinean Andes. J Sediment Res 79:554–567

    Article  Google Scholar 

  • Goldstein RH, Reynolds TJ (1994) Fluid inclusion microthermometry. In: Systematics of fluid inclusions in diagenetic minerals. Society for Sedimentation Geology. Short course 31, pp 87–121

  • Gonfiantini R, Panichi C, Tongiorgi E (1968) Isotopic disequilibrium in travertine deposition. Earth Planet Sci Lett 5:55–58

    Article  Google Scholar 

  • Gudmundsson A, Fjeldskaar I, Brenner SL (2002) Propagation pathways and £uid transport of hydrofractures in jointed and layered rocks in geothermal fields. J Volcanol Geoth Res 116:257–278

    Article  Google Scholar 

  • Guo L, Riding R (1998) Hot-spring travertine facies and sequences, Late Pleistocene, Rapolano Terme, Italy. Sedimentology 45:163–180

    Article  Google Scholar 

  • Guo L, Riding R (1999) Rapid facies changes in Holocene fissure ridge hot spring travertines, Rapolano Terme, Italy. Sedimentology 46:1145–1158

    Article  Google Scholar 

  • Guo L, Andrews J, Riding R, Dennis P, Dresser Q (1996) Possible microbial effects on stable carbon isotope in hot spring travertine. J Sediment Res 66:468–473

    Article  Google Scholar 

  • Hancock PL, Chalmers RML, Altunel E, Çakir Z (1999) Travitonics: using travertines in active fault studies. J Struct Geol 21:903–916

    Article  Google Scholar 

  • Hedenquist JW, Henley RW (1985) Hydrothermal eruptions in the Waiotapu Geothermal System, New-Zealand—their origin, associated breccias, and relation to precious metal mineralization. Econ Geol 80:1640–1668

    Article  Google Scholar 

  • Hubbert MK, Willis DG (1957) Mechanics of hydraulic fracturing. Trans Inst Min Metall Pet Eng 210:165–166

    Google Scholar 

  • Jones B, Renaut RW, Rosen MR (1996) High-temperature (>90°C) calcite precipitation at Waikite Hot Springs, North Island, New Zealand. J Geol Soc London 153:481–496

    Article  Google Scholar 

  • Kele S, Demény A, Siklósy Z, Németh T, Mária T, Kóvacs MB (2008) Chemical and stable isotope compositions of recent hot-water travertines and associated thermal waters, from Egerszalók, Hungary: depositional facies and non-equilibrium fractionations. Sed Geol 211:53–72

    Article  Google Scholar 

  • Kele S, Özkul M, Gökgöz A, Fórizs I, Baykara MO, Alçiçek MC, Németh T (2011) Stable isotope geochemical and facies study of Pamukkale travertines: new evidences of low-temperature non-equilibrium calcite-water fractionation. Sed Geol 238:191–212

    Article  Google Scholar 

  • Kerrich R (1986) Fluid infiltration into fault zones: chemical, isotopic, and mechanical effects. Pure Appl Geochem 124:225–268

    Article  Google Scholar 

  • Laurenzi MA, Villa IM (1991) The age or the early volcanic activity at Monte Amiata volcano, Tuscany: evidence for a paleomagnetic reversal at 300 Ka bp. Plinius 6:160–161

    Google Scholar 

  • Liotta D, Ruggieri G, Brogi A, Fulignati P, Dini A, Nardini I (2009) Migration of geothermal fluids in extensional terrains: the ore deposits of the Boccheggiano-Montieri area (Southern Tuscany, Italy). Int J Earth Sci (Geol Rundsch) 99:623–644

    Article  Google Scholar 

  • Longinelli A, Selmo E (2003) Isotopic composition of precipitation in Italy: a first overall map. J Hydrol 270:75–88

    Article  Google Scholar 

  • Ludwig KR (1999) User’s Manual for Isoplot/Ex Version 2.02, a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 1a. Berkeley, CA, USA

  • Malesani P, Vannucci S (1975) Precipitazione di calcite o di aragonite dalle acque termo-minerali in relazione alla genesi e alla evoluzione dei travertini. Rend Acc Naz Lincei 58:761–776

    Google Scholar 

  • Manfra L, Masi U, Turi B (1974) Effetti isotopici nella diagenesi dei travertini. Geol Rom 13:147–155

    Google Scholar 

  • Manfra L, Masi U, Turi B (1976) La composizione isotopica dei travertini del Lazio. Geol Rom 15:127–174

    Google Scholar 

  • Marinelli G (1969) Some geological data on the geothermal area of Tuscany. Bull Vulcanol 33(1):319–334

    Article  Google Scholar 

  • McCrea JM (1950) On the isotope chemistry of carbonates and a palaeotemperature scale. J Chem Phys 18:849–857

    Article  Google Scholar 

  • Minissale A (2004) Origin, transport and discharge of CO2 in central Italy. Earth Sci Rev 66:89–141

    Article  Google Scholar 

  • Minissale A, Evans WC, Magro G, Vaselli O (1997) Multiple source components in gas manifestations from north-central Italy. Chem Geol 142:175–192

    Article  Google Scholar 

  • Minissale A, Vaselli O, Tassi F, Magro G, Grechi GP (2002) Fluid mixing in carbonate aquifers near Rapolano (central Italy): chemical and isotopic constraints. Appl Geochem 17:1329–1342

    Article  Google Scholar 

  • Molli G (2008) Northern Apennine-Corsica orogenic system: an updated overview. Geol Soc Lond Spec Publ 298:413–442

    Article  Google Scholar 

  • Panichi C, Tongiorgi E (1976) Carbon isotopic composition of CO2 from springs, fumaroles, mofettes, and travertines of Central and Southern Italy: a preliminary prospection method of geothermal area. In: Proceedings 2nd UN symposium on the development and use of geothermal resources, 20–29 May 1975, San Francisco, pp 815–825

  • Peccerillo A (2003) Plio-Quaternary magmatism in Italy. Episodes 26:222–226

    Google Scholar 

  • Pentecost A (2005) Travertine. Springer, Heidelberg, pp 101–147

    Google Scholar 

  • Renaut RW, Jones B (1997) Controls on aragonite and calcite precipitation in hot spring travertine at Chemurkeu, Lake Bogoria, Kenya. Can J Earth Sci 34:801–816

    Article  Google Scholar 

  • Renaut RW, Owen RB, Jones B, Tiercelin J-J, Tarits C, Ego JK, Konhauser KO (2013) Impact of lake-level changes on the formation of thermogene travertine in continental rifts: evidence from Lake Bogoria, Kenya Rift Valley. Sedimentology 60:428–468

    Article  Google Scholar 

  • Richardson CK, Holland HD (1979) Fluorite deposition in hydrothermal systems. Geochem Cosmochim Acta 43:1327–1335

    Article  Google Scholar 

  • Riding R (1991) Classification of microbial carbonates. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin, pp 21–51

    Chapter  Google Scholar 

  • Rimondi V, Chiarantini L, Lattanzi P, Benvenuti M, Beutel M, Colica A, Costagliola P, Di Benedetto F et al (2015) Metallogeny, exploitation and environmental impact of the Mt. Amiata mercury ore district (Southern Tuscany, Italy). It J Geosci (in press)

  • Roedder E (1970) Application of an improved crushing microscope stage to the studies of the gases in fluid inclusions. Schweiz Mineral Petrogr Mitt 50:41–58

    Google Scholar 

  • Roedder E (1984) Fluid inclusions. In: Ribbe PH (ed) Reviews in mineralogy, vol 12. Mineralogical Society of America, Washington, DC

    Google Scholar 

  • Rogie J, Kerrick DM, Chiodini G, Frondini F (2000) Flux measurements of nonvolcanic CO2 emission from some vents in central Italy. J Geophys Res 105:8435–8445

    Article  Google Scholar 

  • Ruggieri G, Gianelli G (1999) Multi-stage fluid circulation in a hydraulic fracture breccia of the Larderello geothermal field Italy. J Volcanol Geoth Res 90:241–261

    Article  Google Scholar 

  • Sasada M (1985) CO2-bearing fluid inclusions from geothermal field. Geotherm Resour Counc Trans 9:351–356

    Google Scholar 

  • Shepherd TJ, Rankin AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Blackie, Glasgow

    Google Scholar 

  • Simmons SF, Christenson WB (1994) Origins of calcite in a boiling geothermal system. Am J Sci 294:361–400

    Article  Google Scholar 

  • Słowakiewicz M (2003) Fluid inclusion data from the Upper Triassic hot-spring travertines in southern Poland. J Geochem Explor 78–79:123–126

    Article  Google Scholar 

  • Taddeucci A, Voltaggio M (1987) Th-230 dating of the travertines connected to the Vulsini Mts. volcanism (Northern Latium, Italy): neotectonics and hydrogeology. Per Mineral 56:295–302

    Google Scholar 

  • Tanelli G (1983) Ore deposits and minerogenesis of Tuscany. Mem Soc Geol Ital 25:91–106 (in Italian)

    Google Scholar 

  • Tassi F, Vaselli O, Cuccoli F, Buccianti A, Nisi B, Lognoli E, Montegrossi G (2009) A geochemical multi-methodological approach in hazard assessment of CO2-rich gas emissions at Mt. Amiata Volcano (Tuscany, Central Italy). Water Air Soil Pollut Focus 9:117–127

    Article  Google Scholar 

  • Turi B (1986) Stable isotopes geochemistry of travertines. In: Fritz P, Fontes JC (eds) The terrestrial environment. Handbook of environmental isotope geochemistry, vol 2B. Elsevier, Amsterdam, pp 207–238

    Google Scholar 

  • Uysal IT, FengY Zhao J-X, Altunel E, Weatherley D, Karakacak V, Cengiz O, Golding SD, Lawrence MG, Collerson KD (2007) U-series dating and geochemical tracing of late Quaternary travertine in co-seismic fissures. Earth Planet Sci Lett 257:450–462

    Article  Google Scholar 

  • Uysal IT, Feng Y-X, Zhao J-X, Isik V, Nuriel P, Golding SD (2009) Hydrothermal CO2 degassing in seismically active zones during the late Quaternary. Chem Geol 265:442–454

    Article  Google Scholar 

  • Vermoere M, Degryse P, Vanhecke L, Muchez Ph, Paulissen E, Smets E, Waelkens M (1999) Pollen analysis of two travertine sections in Basköy (southwestern Turkey): implications for environmental conditions during the early Holocene. Rev Palaeobot Palyno 105:93–110

    Article  Google Scholar 

  • Winkel LHE, Casentini B, Bardelli F, Voegelin A, Nikolaidis NP, Charlet L (2013) Speciation of arsenic in Greek travertines: co-precipitation of arsenate with calcite. Geochimic Cosmochim Acta 106:99–110

    Article  Google Scholar 

  • Zhao J-X, Hu K, Collerson KD, Xu HK (2001) Thermal ionization mass spectrometry U-series dating of a hominid site near Nanjing, China. Geology 29:27–30

    Article  Google Scholar 

  • Zheng Y-Z (1990) Carbon-oxygen isotopic covariation in hydrothermal calcite during degassing of CO2. A quantitative evaluation and application to the Kushikino gold mining area in Japan. Mineral Depos 25:246–250

    Article  Google Scholar 

  • Zhou HY, Zhao J-X, Wang Q, Feng Y-X, Tang J (2011) Speleothem-derived Asian summer monsoon variations in Central China during 54–46 ka. J Quat Sci 26:781–790

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by MIUR PRIN 2010–2011 to P. Costagliola and P. Lattanzi. This research was accomplished thanks to the scientific instruments provided by the Ente Cassa di Risparmio di Firenze to the Dipartimento di Scienze della Terra (Università di Firenze). Radiometric age data were obtained using funds provided by the Australian National Centre for Groundwater Research and Training (Program 3). Elena Pecchioni and Mario Paolieri (Università di Firenze) are also gratefully thanked for their assistance during XRD and SEM–EDS analysis. Two anonymous reviewers are also thanked for their help to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Rimondi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rimondi, V., Costagliola, P., Ruggieri, G. et al. Investigating fossil hydrothermal systems by means of fluid inclusions and stable isotopes in banded travertine: an example from Castelnuovo dell’Abate (southern Tuscany, Italy). Int J Earth Sci (Geol Rundsch) 105, 659–679 (2016). https://doi.org/10.1007/s00531-015-1186-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-015-1186-y

Keywords

Navigation