Skip to main content

Advertisement

Log in

Regional setting and characteristics of the Neoproterozoic Wadi Hamama Zn–Cu–Ag–Au prospect: evidence for an intra-oceanic island arc-hosted volcanogenic hydrothermal system

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Wadi Hamama area is a volcanogenic Zn–Cu–Au–Ag prospect. It is hosted by a Neoproterozoic bimodal-mafic sequence, which comprises basalt, dacite and rhyolite along with volcaniclastic rocks. The rocks have a low-K tholeiitic affinity and are enriched in large ion lithophile elements over high field strength elements, which indicated their formation in an intra-oceanic island arc tectonic setting. The area was intruded by a tonalite–trondhjemite body, which has an intra-oceanic island arc affinity and later by diorite, which has a cordilleran-margin geochemical affinity. These rock units were intruded by post-tectonic granite dykes, which have a within-plate geochemical signature. There is a quartz-carbonate horizon extending along the contact between the basalt and the volcaniclastic rocks, mainly banded and lapilli tuffs. This horizon is of exhalative origin and is underlain by a mushroom-shaped alteration zone extending from the horizon down to the massive basalt. The footwall alteration is characterized by a silica-rich core surrounded by a thick chlorite sheath. Both the quartz-carbonate horizon and the footwall-altered rocks enclose historical trenches and pits. Sulfide-rich core samples are enriched in Zn, relative to Cu, and in Ag, which indicates the low-temperature nature of the hydrothermal system. The prospect was affected by supergene processes, which led to the widespread occurrence of secondary copper minerals and gold enrichment relative to the leached base metals, especially Zn. The prospect formed through a limited rifting of an intra-oceanic island arc which resulted in the formation of a small-scale volcanogenic Zn–Cu–Ag–Au prospect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abd El-Rahman Y, Polat A, Dilek Y, Fryer BJ, El-Sharkawy M, Sakran S (2009a) Geochemistry and tectonic evolution of the Neoproterozoic incipient are-forearc crust in the Fawakhir area, Central Eastern desert of Egypt. Precambr Res 175:116–134

    Article  Google Scholar 

  • Abd El-Rahman Y, Polat A, Dilek Y, Fryer BJ, El-Sharkawy M, Sakran S (2009b) Geochemistry and tectonic evolution of the Neoproterozoic Wadi Ghadir ophiolite, Eastern Desert, Egypt. Lithos 113:158–178

    Article  Google Scholar 

  • Abd El-Rahman Y, Polat A, Dilek Y, Kusky TM, El-Sharkawi M, Said A (2012) Cryogenian ophiolite tectonics and metallogeny of the Central Eastern Desert of Egypt. Int Geol Rev 54:1870–1884

    Article  Google Scholar 

  • Abd El-Rahman Y, Surour AA, El Manawi AHW, Rifai M, Abdel Motelib A, Ali WK, El Dougdoug AM (2013) Ancient mining and smelting activities in the Wadi Abu Gerida Area, Central Eastern Desert, Egypt: preliminary results. Archaeometry 55:1067–1087

    Article  Google Scholar 

  • Abdel Kader Z, Shalaby IM (1982) Post-ore alteration at Atshan talc mine, Hamata, Eastern Desert, Egypt. Ann Geolog Surv Egypt 12:163–175

    Google Scholar 

  • Abdel Nabi A, Aboul Wafa N, El Hawaary MA, Sabet AH (1977) Results of prospecting for gold and rare metals in Wadis Safaga, El Barrud, El Marah and Hamama. Internal Report of the Geological Survey of Egypt, 24

  • Abdelsalam MG, Liégeois J-P, Stern RJ (2002) The saharan metacraton. J Afr Earth Sci 34:119–136

    Article  Google Scholar 

  • Alexander Nubia (2012a) Report number 1329401460 (16 February 2012) on Wadi Hamama deposit. http://www.alexandernubia.com/news/display/43. Accessed 16 March 2013

  • Alexander Nubia (2012b) Report number 133276262 (26 March 2012) on Wadi Hamama deposit. http://www.alexandernubia.com/news/display/45. Accessed 16 June 2013

  • Ali KA, Stern RJ, Manton WI, Kimura J-I, Khamis HA (2009) Geochemistry Nd isotopes and U-Pb SHRIMP zircon dating of Neoproterozoic volcanic rocks from the Central Eastern Desert of Egypt: new insight into the ~750 Ma crust-forming event. Precambr Res 171:1–22

    Article  Google Scholar 

  • Al-Shanti AM, El-Mahdy OR, Hassan MA, Hussein AA (1993) A comparative study of five volcanic-hosted sulfide mineralizations in the Arabian Shield. J King Abdulaziz Univ Earth Sci 6:1–33

    Article  Google Scholar 

  • Barker F, Arth JG (1976) Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites. Geology 4:596–600

    Article  Google Scholar 

  • Barrett TJ, MacLean WH (1994) Chemostratigraphy and hydrothermal alteration in exploration for VHMS deposits in greenstone and younger volcanic rocks. In: Lentz DR (ed) Alteration and alteration processes associated with ore-forming systems. Geological Association of Canada, Short Course Notes 11, pp 433–467

  • Barrie CT, Nielsen FW, Aussant CH (2007) The Bisha volcanic-associated massive sulfide deposit, western Nakfa Terrane, Eritrea. Econ Geol 102:717–738

    Article  Google Scholar 

  • Botros NS (2003) On the relationship between auriferous talc deposits hosted in volcanic rocks and massive sulfide deposits in Egypt. Ore Geol Rev 23:223–257

    Article  Google Scholar 

  • Bourcier WL, Barnes HL (1987) Ore solution chemistry-VIII. Stabilities of chloride and bisulfide complexes of zinc to 350 °C. Econ Geol 82:1839–1863

    Article  Google Scholar 

  • Callaghan T (2001) Geology and host-rocks alteration of the Henty and Mount Julia gold deposits, Western Tasmania. Econ Geol 96:1073–1088

    Article  Google Scholar 

  • Canet C, Prol-Ledesma RM, Melgarejo J-C, Reyes A (2003) Methane-related carbonates formed at submarine hydrothermal springs: a new setting for microbially-derived carbonates? Mar Geol 199:245–261

    Article  Google Scholar 

  • Cathles LM, Erendi AHJ, Barrie T (1997) How long can a hydrothermal system be sustained by a single intrusive event? Econ Geol 92:766–771

    Article  Google Scholar 

  • de Ronde CEJ, Hannington MD, Stoffers P, Wright IC, Ditchburn RG, Reyes AG, Baker ET, Massoth GJ, Lupton JE, Walker SL, Greene RR, Soong CWR, Ishibashi J, Lebon GT, Bray CT, Resing JA (2005) Evolution of a submarine magmatic-hydrothermal system: brothers Volcano, Southern Kermadec Arc, New Zealand. Econ Geol 100:1079–1133

    Article  Google Scholar 

  • DeMatties TA (1994) Early Proterozoic volcanogenic massive sulfide deposits in Wisconsin: an overview. Econ Geol 89:112–1151

    Article  Google Scholar 

  • Doe BR (1994) Zinc, copper, and lead in mid-ocean ridge basalts and the source rocks control on Zn/Pb in ocean-ridge hydrothermal deposits. Geochim Cosmochim Acta 58:2215–2223

    Article  Google Scholar 

  • Doebrich JL, Al-Jehani AM, Siddiqui AA, Hayes TS, Wooden JL, Johnson PR (2007) Geology and metallogeny of the Ar Rayn terrane, eastern Arabian Shield: evolution of a Neoproterozoic continental-margin arc during assembly of Gondwana within the East African orogen. Precambr Res 158:17–50

    Article  Google Scholar 

  • Doyle MG, Allen RL (2003) Subsea-floor replacement in volcanic-hosted massive sulfide deposits. Ore Geol Rev 23:183–222

    Article  Google Scholar 

  • El Aref MM, Khudier A, El Habbak GH (1985) On the geometry of Stratabound Fe, Cu, Zn and Pb sulfides in the metapyroclastics at Um Samiuki area, Eastern Desert, Egypt. In: Proceedings of the Second Jordanian Geological Conference, Amman, pp 68–174

  • Eliwa HA, Breitkreuz C, Murata M, Khalaf IM, Buhler B, Itaya T, Takahashi T, Hirahara Y, Miyazaki T, Kimura J-I, Shibata T, Koshi Y, Kato Y, Ozawa H, Daas MA, El Gameel Kh (2014) SIMS zircon U–Pb and mica K–Ar geochronology, and Sr–Nd isotope geochemistry of Neoproterozoic granitoids and their bearing on the evolution of the north Eastern Desert, Egypt. Gondwana Res 25:1570–1598

    Article  Google Scholar 

  • Farahat ES (2006) The Neoproterozoic Kolet Um Kharit bimodal metavolcanic rocks, south Eastern Desert, Egypt: a case of enrichment from plume interaction? Int J Earth Sci 95:275–287

    Article  Google Scholar 

  • Franklin JM, Sangster DM, Lydon JW (1981) Volcanic-associated massive sulfide deposits. In: Skinner BJ (ed) 75th anniversary volume of economic geology. The Economic Geology Publishing Company, Lancaster, pp 485–627

    Google Scholar 

  • Franklin JM, Gibson HL, Jonasson IR, Galley AG (2005) Volcanogenic massive sulfide deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) 100th anniversary volume of economic geology. Society of Economic Geologists, Littleton, pp 523–560

    Google Scholar 

  • Galley AG (2003) Composite synvolcanic intrusions associated with Precambrian VMS-related hydrothermal systems. Miner Depos 38:443–473

    Article  Google Scholar 

  • Gemmell JB, Fulton R (2001) Geology, genesis, and exploration implications of the footwall and hanging-wall alteration associated with the Hellyer volcanic-hosted massive sulfide deposit, Tasmania, Australia. Econ Geol 96:1003–1035

    Google Scholar 

  • Greiling RO, Abdeen MM, Dardir AA, El Akhal H, El Ramly MF, Kamal El Din GM, Osman AF, Rashwan AA, Rice AHN, Sadek MF (1994) A structural synthesis of the Proterozoic Arabian-Nubian Shield in Egypt. Geol Rundsch 83:484–501

    Article  Google Scholar 

  • Hafez A, Shalaby IM (1983) On the geochemical characteristics of the volcanic rocks at Um Samiuki, Eastern Desert, Egypt. Egypt J Geol 16:269–281

    Google Scholar 

  • Halley SW, Roberts RH (1997) Henty: a shallow-water gold-rich volcanogenic massive sulfide deposit in Western Tasmania. Econ Geol 92:438–447

    Article  Google Scholar 

  • Hannington MD, Jonasson I, Herzig P, Petersen S (1995) Physical and chemical processes of seafloor mineralization at mid-ocean ridges. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions., Geophysical Monograph Series 91American Geophysical Union, Washington, DC, pp 115–157

    Chapter  Google Scholar 

  • Hannington MD, Poulsen KH, Thompson JFH, Sillitoe RH (1999) Volcanogenic gold in the massive sulfide environment. Rev Econ Geol 8:319–350

    Google Scholar 

  • Hannington MD, de Ronde CEJ, Petersen S (2005) Sea-floor tectonics and submarine hydrothermal systems. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) 100th anniversary volume of economic geology. Society of Economic Geologists, Littleton, pp 111–142

    Google Scholar 

  • Harbi HM, Surour AA, Davidson GJ (2014) Genesis of Neoproterozoic Au-bearing volcanogenic sulfides and quartz veins in the Ar Rjum goldfield, Saudi Arabia. Ore Geol Rev 58:110–125

    Article  Google Scholar 

  • Hart TR, Gibson HL, Lesher CM (2004) Trace element geochemistry and petrogenesis of felsic volcanic rocks associated with volcanogenic massive Cu–Zn–Pb sulfide deposits. Econ Geol 99:1003–1013

    Article  Google Scholar 

  • Hassan YM (2005) Geology and mineralization of the Precambrian rocks at Wadi Hamama area, central Eastern Desert. M.Sc. Dissertation, Cairo University, Egypt

  • Hawkins JW, Bloomer SH, Evans CA, Melchior JT (1984) Evolution of intra-oceanic arc-trench systems. Tectonophysics 102:175–205

    Article  Google Scholar 

  • Helmy HM (1999) The Um Samiuki volcanogenic Zn–Cu–Pb–Ag deposit, Eastern desert, Egypt: a possible new occurrence of Cervelleite. Can Mineral 37:143–158

    Google Scholar 

  • Herzig PM, Hannington MD (1995) Polymetallic massive sulfides at modern seafloor. Ore Geol Rev 10:95–115

    Article  Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle continental crust and oceanic crust. Earth Planet Sci Lett 90:297–414

    Article  Google Scholar 

  • Hussein AA, Ali MM, El Ramly MF (1982) A proposed new classification of the granites of Egypt. J Volcanol Geoth Res 14:187–198

    Article  Google Scholar 

  • Huston DL, Taylor T, Fabray J, Patterson DJ (1992) A comparison of the geology and mineralization of the Balcooma and Dry River South volcanic-hosted massive sulfide deposits, Northern Queensland. Econ Geol 87:785–811

    Article  Google Scholar 

  • Inverno CMC, Solomon M, Barton MD, Foden J (2008) The Cu stockwork and massive sulfide ore of the Feitais volcanic-hosted massive sulfide deposit, Aljustrel, Iberian Pyrite Belt, Portugal: a mineralogical, fluid inclusion, and isotopic investigation. Econ Geol 103:241–267

    Article  Google Scholar 

  • Johnson PR, Andresen A, Collins AS, Fowler AR, Fritz H, Ghebreab W, Kusky T, Stern RJ (2011) Late Cryogenian–Ediacaran history of the Arabian–Nubian Shield: a review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. J Afr Earth Sci 61:167–232

    Article  Google Scholar 

  • Kerr DJ, Gibson HL (1993) A comparison of the Horne volcanogenic massive sulfide deposit and intracauldron deposits of the Mine Sequence, Noranda, Quebec. Econ Geol 88:1419–1442

    Article  Google Scholar 

  • Kerrich R, Wyman DA (1997) Review of developments in trace-element fingerprinting of geodynamic settings and their implications for mineral exploration. Aust J Earth Sci 44:465–487

    Article  Google Scholar 

  • Koski RA (2012) Supergene ore and gangue characteristics in volcanogenic massive sulfide occurrence model. U.S. Geological Survey Scientific Investigation Report 2010-5070-C, chap 12

  • Kröner A, Krüger J, Rashwan AAA (1994) Age and tectonic setting of granitoid gneisses in the Eastern Desert of Egypt and south-west Sinai. Geol Rundsch 83:502–513

    Article  Google Scholar 

  • Lafrance B, Mueller WU, Daigneault R, Dupras N (2000) Evolution of a submerged composite volcano: volcanology and geochemistry of the Normétal volcanic complex, Abitibi greenstone belt, Quèbec, Canada. Precambr Res 101:277–311

    Article  Google Scholar 

  • Large RR (1992) Australian volcanic-hosted massive sulfide deposits: features, styles, and genetic models. Econ Geol 87:471–510

    Article  Google Scholar 

  • Large RR, Both RA (1980) The volcanogenic sulfide ores at Mount Chalmers, Eastern Queensland. Econ Geol 75:992–1009

    Article  Google Scholar 

  • Large RR, Doyle M, Raymond O, Cooke D, Jones A, Heasman L (1996) Evaluation of the role of Cambrian granites in the genesis of world class VHMS deposits in Tasmania. Ore Geol Rev 10:215–230

    Article  Google Scholar 

  • Lentz DR (1998) Petrogenetic evolution of felsic volcanic sequences associated with Phanerozoic volcanic-hosted massive sulfide systems: the role of extensional geodynamics. Ore Geol Rev 12:289–327

    Article  Google Scholar 

  • Lesher CM, Goodwin AM, Campbell IH, Gorton MP (1986) Trace-element geochemistry of ore-associated and barren, felsic metavolcanic rocks in the Superior Province, Canada. Can J Earth Sci 23:222–237

    Article  Google Scholar 

  • MacGeehan PJ (1978) The geochemistry of altered volcanic rocks at Matagami, Quebec: a geothermal model for massive sulphide genesis. Can J Earth Sci 15:551–570

    Article  Google Scholar 

  • Meschede M (1986) A method of discrimination between different types of mid-ocean ridge basalts and continental tholeiites with the Nb–Zr–Y diagram. Chem Geol 56:207–218

    Article  Google Scholar 

  • Minex Mineral Egypt (1991) Report on exploration percussion drilling at Hamama (b), Internal Report of the Geological Survey of Egypt, 9(b)

  • Nakajima KN, Arima M (1998) Melting experiments on hydrous low-K tholeiite: implications for the genesis of tonalitic crust in the Izu–Bonin–Mariana arc. Island Arc 7:359–373

    Article  Google Scholar 

  • Norrish K, Chappell BW (1977) X-ray fluorescence spectroscopy. In: Zussman J (ed) Physical methods in determinative mineralogy, 2nd edn. Academic Press, London, pp 201–272

    Google Scholar 

  • Ohmoto H (1996) Formation of volcanogenic massive sulfide deposits: the Kuroko perspective. Ore Geol Rev 10:135–177

    Article  Google Scholar 

  • Patchett PJ, Chase CG (2002) Role of transform continental margins in major crustal growth episodes. Geology 30:39–42

    Article  Google Scholar 

  • Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites: orogenic andesites and related rocks. John Wiley, Chichester, pp 525–547

    Google Scholar 

  • Pearce JA (1983) Role of sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva, Nantwich, pp 230–249

    Google Scholar 

  • Pearce J (1996) Sources and settings of granitic rocks. Episodes 19:120–125

    Google Scholar 

  • Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet Sci Lett 19:290–300

    Article  Google Scholar 

  • Pearce JM, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib Miner Petrol 69:33–47

    Article  Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Article  Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Miner Petrol 58:63–81

    Article  Google Scholar 

  • Petersen S, Herzig PM, Hannington MD (2000) Third dimension of a presently forming VMS deposit: TAG hydrothermal mound, Mid-Atlantic Ridge, 26°N. Miner Depos 35:233–259

    Article  Google Scholar 

  • Piercey S (2011) The setting, style, and role of magmatism in the formation of volcanogenic massive sulfide deposits. Miner Depos 46:449–471

    Article  Google Scholar 

  • Piercey SJ, Squires GC, Brace TD (2014) Lithostratographic, hydrothermal, and tectonic setting of the Boundary volcanogenic massive sulfide deposit, Newfoundland Appalachian, Canada: formation by Subseafloor replacement in a Cambrian rifted arc. Econ Geol 109:661–687

    Article  Google Scholar 

  • Polat A, Hofmann AW (2003) Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland. Precambr Res 126:197–218

    Article  Google Scholar 

  • Rabb RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36:891–931

    Article  Google Scholar 

  • Rasmy AH, Takla MA, Gad MA (1983) Alteration associated with ore formation at Um Samiuki, south Eastern Desert, Egypt. Ann Geol Surv Egypt 13:1–21

    Google Scholar 

  • Riverin G, Hodgson CJ (1980) Wall-rock alteration at the Millenbach Cu–Zn Mine, Noranda, Quebec. Econ Geol 75:424–444

    Article  Google Scholar 

  • Robb L (2005) Introduction to ore-forming processes. Blackwell Publishing, Oxford

    Google Scholar 

  • Schellekens JH (1986) A Proterozoic island-arc-related volcanogenic sulfide deposit near Bahrah, Saudi Arabia. Econ Geol 81:484–488

    Article  Google Scholar 

  • Scott KM, Ashley PM, Lawie DC (2001) The geochemistry, mineralogy and maturity of gossans derived from volcanogenic Zn–Pb–Cu deposits of the eastern Lachlan Fold Belt, NSW, Australia. J Geochem Explor 72:169–191

    Article  Google Scholar 

  • Shalaby IM, Stumpfl E, Helmy HM, El Mahallawi MM, Kamel OA (2004) Silver and silver-bearing minerals at the Um Samiuki volcanogenic massive sulfide deposit, Eastern Desert, Egypt. Miner Depos 39:608–621

    Article  Google Scholar 

  • Shervais JW (1982) Ti–V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett 59:101–118

    Article  Google Scholar 

  • Smith IEM, Worthington TJ, Price RC, Gamble JA (1997) Primitive magmas in arc-type volcanic associations: examples from the southwest Pacific. Can Mineral 35:257–273

    Google Scholar 

  • Smith IEM, Worthington TJ, Stewart RB, Price RC, Gamble JA (2003) Felsic volcanism in the Kermadic arc, SW Pacific: crustal recycling in an oceanic setting. In: Larter RD, Leat ET (eds) Intra-oceanic subduction systems: tectonic and magmatic processes. Geological Society, London, pp 99–118 Special Publication 219

    Google Scholar 

  • Smith DJ, Jenkin GRT, Petterson MG, Naden J, Fielder S, Toba T, Chenery SRN (2011) Unusual mixed silica–carbonate deposits from magmatic–hydrothermal hot springs, Savo, Solomon Islands. J Geol Soc Lond 168:1297–1310

    Article  Google Scholar 

  • Stern RJ (1994) Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwanaland. Annu Rev Earth Planet Sci 22:319–351

    Article  Google Scholar 

  • Stern RJ, Bloomer SH (1992) Subduction zone infancy: examples from the Eocene Izu–Bonin–Mariana and Jurassic California arcs. Geol Soc Am Bull 104:1621–1636

    Article  Google Scholar 

  • Stern RJ, Kröner A, Rashhwan A (1991) A late Precambrian (~710) high volcanicity rift in the southern Eastern Desert of Egypt. Geol Rundsch 80(1):155–170

    Article  Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and systematic of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins. Geological Society, London, pp 313–345 Special Publication 42

    Google Scholar 

  • Surour A, Bakhsh R (2013) Microfabrics and microchemistry of sulfide ores from the 640 FEW level at the Al Amar gold mine, Saudi Arabia. J Microsc Ultrastruct 1:96–110

    Article  Google Scholar 

  • Syme EC, Bailes AH (1993) Stratigraphic and tectonic setting of the Early Proterozoic volcanogenic massive sulfide deposits, Flin Flon, Manitoba. Econ Geol 88:566–589

    Article  Google Scholar 

  • Takla MA, Surour AA, Elmansi MM (1998) Microfabrics and mineral chemistry of sulfides from “Shadli” metavolcanics and younger gabbros, Eastern Desert, Egypt. Ann Geol Surv Egypt 21:191–215

    Google Scholar 

  • Tiercelin J-J, Pflumio C, Castrec M, Boulègue J, Gente P, Rolet J, Coussement C, Stetter KO, Huber R, Buku S, Mifundu W (1993) Hydrothermal vents in Lake Tanganyika, East African Rift system. Geology 21:499–502

    Article  Google Scholar 

  • Urabe T, Kusakabe M (1990) Barite silica chimneys from the Sumisu Rift, Izu–Bonin arc: possible analog to hematitic chert associated with Kuroko deposits. Earth Planet Sci Lett 100:283–290

    Article  Google Scholar 

  • Whalen JB, McNicoll VJ, Galley AG, Longstaffe FJ (2004) Tectonic and metallogenic importance of an Archean composite high- and low-Al tonalite suite, Western Superior Province, Canada. Precambr Res 132:275–301

    Article  Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343

    Article  Google Scholar 

Download references

Acknowledgments

The authors are greatly indebted to Robin Adair and an anonymous reviewer for their detailed constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser Abd El-Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd El-Rahman, Y., Surour, A.A., El-Manawi, A.H.W. et al. Regional setting and characteristics of the Neoproterozoic Wadi Hamama Zn–Cu–Ag–Au prospect: evidence for an intra-oceanic island arc-hosted volcanogenic hydrothermal system. Int J Earth Sci (Geol Rundsch) 104, 625–644 (2015). https://doi.org/10.1007/s00531-014-1093-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-014-1093-7

Keywords

Navigation