Skip to main content
Log in

RefinerHash: a new hashing-based re-ranking technique for image retrieval

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Re-ranking is a task of refining an initially ranked list of images obtained from an image retrieval technique for a given query image, with the goal of enhancing retrieval performance in an efficient manner. However, existing re-ranking methods suffer from high computational complexity, leading to slow and resource-intensive operations that render them to be impractical for real-life applications. This necessitates the development of a computationally efficient re-ranking approach that effectively improves the retrieval performance. In this paper, we propose a novel and computationally efficient re-ranking method for image retrieval, utilizing the speedy and proficient nature of image hashing techniques for image representation. Use of the hash code of an image using its DCT and DWT coefficients constitutes the basis of the proposed re-ranking technique. Three balanced binary search trees, one using the hash codes of the images corresponding to the DCT coefficients, and the other two using the most significant and the least significant bits of the hash codes corresponding to the DWT coefficients, are formed. Each balanced binary search tree is searched by comparing the hash code of the query image with those of the images in the tree starting from its root to form a set of the images that are comparable to the query image. Finally, the three sets of the images resulting from the three balanced binary search trees are used to obtain the final re-ranked list of retrieved images. Experimental results on the proposed retrieval scheme based on hashing-based re-ranking and various other image retrieval schemes using benchmark datasets demonstrate the superiority of our approach in terms of computational efficiency and retrieval performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets used in this paper are publicly available on the Internet.

Notes

  1. The best-known algorithm for matrix multiplication, as of the time of writing, achieves a time complexity of \(\mathcal{O}({{\text{n}}}^{2.3728596})\) [59]. Here, we approximate this as \(\mathcal{O}({{\text{n}}}^{2})\) for simplicity. This approximation does not affect the conclusions drawn from our analysis.

References

  1. Trends, C., Tyagi, V.: Content-Based Image Retrieval: Ideas, Influences, and Current Trends. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-6759-4

    Book  Google Scholar 

  2. Li, P., Xie, J., Li, Z., Liu, T., Yan, W.: Facial peculiarity retrieval via deep neural networks fusion. Int. J. Comput. Intell. Syst. 11, 58–65 (2018). https://doi.org/10.2991/ijcis.11.1.5

    Article  Google Scholar 

  3. Kumar, A., Nette, F., Klein, K., Fulham, M., Kim, J.: A visual analytics approach using the exploration of multidimensional feature spaces for content-based medical image retrieval. IEEE J. Biomed. Heal. Inform. 19, 1734–1746 (2015). https://doi.org/10.1109/JBHI.2014.2361318

    Article  Google Scholar 

  4. Li, Y., Wang, X., Qi, S., Huang, C., Jiang, Z.L., Liao, Q., Guan, J., Zhang, J.: Self-supervised learning-based weight adaptive hashing for fast cross-modal retrieval. Signal Image Video Process. 15, 673–680 (2021). https://doi.org/10.1007/s11760-019-01534-0

    Article  Google Scholar 

  5. Sujatha, D., Subramaniam, M., Rene Robin, C.R.: A new design of multimedia big data retrieval enabled by deep feature learning and adaptive semantic similarity function. Multimed. Syst. 28, 1039–1058 (2022). https://doi.org/10.1007/s00530-022-00897-8

    Article  Google Scholar 

  6. Xia, R., Pan, Y., Lai, H., Liu, C., Yan, S.: Supervised hashing for image retrieval via image representation learning. In: Proceedings of AAAI Conference on Artificial Intelligence. pp. 2156–2162 (2014). https://doi.org/10.1609/AAAI.V28I1.8952

  7. Yuan, X., Zhao, Y.: Perceptual image hashing based on three-dimensional global features and image energy. IEEE Access. 9, 49325–49337 (2021). https://doi.org/10.1109/ACCESS.2021.3069045

    Article  Google Scholar 

  8. Yang, E., Liu, T., Deng, C., Liu, W., Tao, D.: DistillHash: unsupervised deep hashing by distilling data pairs. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. pp. 2941–2950 (2019). https://doi.org/10.1109/CVPR.2019.00306

  9. Lin, K., Lu, J., Chen, C.S., Zhou, J.: Learning compact binary descriptors with unsupervised deep neural networks. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. pp. 1183–1192 (2016). https://doi.org/10.1109/CVPR.2016.133

  10. Huang, S., Xiong, Y., Zhang, Y., Wang, J.: Unsupervised triplet hashing for fast image retrieval. In: Proceedings of ACM Multimedia Thematic Workshops. pp. 84–92 (2017). https://doi.org/10.1145/3126686.3126773

  11. Ma, Y., Li, Q., Shi, X., Guo, Z.: Unsupervised deep pairwise hashing. Electronics 11, 744–755 (2022). https://doi.org/10.3390/electronics11050744

    Article  Google Scholar 

  12. Ghayoumi, M., Gomez, M., Baumstein, K.E., Persaud, N., Perlowin, A.J.: Local sensitive hashing (LSH) and convolutional neural networks (CNNs) for object recognition. In: Proceedings of IEEE International Conference on Machine Learning and Applications. pp. 1197–1199 (2018). https://doi.org/10.1109/ICMLA.2018.00193

  13. Cao, Z., Long, M., Wang, J., Yu, P.S.: HashNet: Deep learning to hash by continuation. In: Proceedings of IEEE International Conference on Computer Vision. pp. 5609–5618 (2017). https://doi.org/10.1109/ICCV.2017.598

  14. Su, S., Zhang, C., Han, K., Tian, Y.: Greedy hash: towards fast optimization for accurate hash coding in CNN. In: Proceedings of International Conference on Neural Information Processing Systems. pp. 806–815 (2018). https://doi.org/10.5555/3326943.3327018

  15. Ng, W.W.Y., Li, J., Tian, X., Wang, H., Kwong, S., Wallace, J.: Multi-level supervised hashing with deep features for efficient image retrieval. Neurocomputing 399, 171–182 (2020). https://doi.org/10.1016/J.NEUCOM.2020.02.046

    Article  Google Scholar 

  16. Pang, S., Ma, J., Xue, J., Zhu, J., Ordonez, V.: Deep feature aggregation and image re-ranking with heat diffusion for image retrieval. IEEE Trans. Multimed. 21, 1513–1523 (2019). https://doi.org/10.1109/TMM.2018.2876833

    Article  Google Scholar 

  17. Tian, X., Ng, W.W.Y., Wang, H., Kwong, S.: Complementary incremental hashing with query-adaptive re-ranking for image retrieval. IEEE Trans. Multimed. 23, 1210–1224 (2021). https://doi.org/10.1109/TMM.2020.2994509

    Article  Google Scholar 

  18. Pedronette, D.C.G., Torres, R.D.S.: Image re-ranking and rank aggregation based on similarity of ranked lists. Pattern Recognit. 46, 2350–2360 (2013). https://doi.org/10.1016/J.PATCOG.2013.01.004

    Article  Google Scholar 

  19. Singh, J.: Ranks aggregation and semantic genetic approach based hybrid model for query expansion. Int. J. Comput. Intell. Syst. 10, 34–55 (2017). https://doi.org/10.2991/IJCIS.2017.10.1.4

    Article  Google Scholar 

  20. Chum, O., Mikulík, A., Perdoch, M., Matas, J.: Total recall II: query expansion revisited. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. pp. 889–896 (2011). https://doi.org/10.1109/CVPR.2011.5995601

  21. Gupta, D., Loane, R., Gayen, S., Demner-Fushman, D.: Medical image retrieval via nearest neighbor search on pre-trained image features. Knowl.-Based Syst..-Based Syst. 278, 110907 (2023). https://doi.org/10.1016/J.KNOSYS.2023.110907

    Article  Google Scholar 

  22. Niu, L., Xu, Z., Zhao, L., He, D., Ji, J., Yuan, X., Xue, M.: Residual vector product quantization for approximate nearest neighbor search. Expert Syst. Appl. 232, 120832 (2023). https://doi.org/10.1016/J.ESWA.2023.120832

    Article  Google Scholar 

  23. Qin, D., Gammeter, S., Bossard, L., Quack, T., Van Gool, L.: Hello neighbor: accurate object retrieval with k-reciprocal nearest neighbors. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. pp. 777–784 (2011). https://doi.org/10.1109/CVPR.2011.5995373

  24. Zhong, Z., Zheng, L., Cao, D., Li, S.: Re-Ranking person re-identification with k-reciprocal encoding. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. pp. 3652–3661 (2017). https://doi.org/10.1109/CVPR.2017.389

  25. Jegou, H., Harzallah, H., Schmid, C.: A contextual dissimilarity measure for accurate and efficient image search. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. pp. 1–8 (2007). https://doi.org/10.1109/CVPR.2007.382970

  26. Wu, F., Yan, S., Smith, J.S., Zhang, B.: Vehicle re-identification in still images: Application of semi-supervised learning and re-ranking. Signal Process. Image Commun. 76, 261–271 (2019). https://doi.org/10.1016/J.IMAGE.2019.04.021

    Article  Google Scholar 

  27. Chen, Y., Yuan, J., Li, Z., Wu, Y., Nouioua, M., Xie, G.: Person re-identification based on re-ranking with expanded k-reciprocal nearest neighbors. J. Vis. Commun. Image Represent.Commun. Image Represent. 58, 486–494 (2019). https://doi.org/10.1016/J.JVCIR.2018.11.044

    Article  Google Scholar 

  28. Yan, Y., Liu, G., Wang, S., Zhang, J., Zheng, K.: Graph-based clustering and ranking for diversified image search. Multimed. Syst. 23, 41–52 (2017). https://doi.org/10.1007/S00530-014-0419-4

    Article  Google Scholar 

  29. Yang, F., Matei, B., Davis, L.S.: Re-ranking by multi-feature fusion with diffusion for image retrieval. In: Proceedings of IEEE Winter Conference on Applications of Computer Vision. pp. 572–579 (2015). https://doi.org/10.1109/WACV.2015.82

  30. Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: automatic query expansion with a generative feature model for object retrieval. In: Proceedings of IEEE International Conference on Computer Vision. pp. 1–8 (2007). https://doi.org/10.1109/ICCV.2007.4408891

  31. Arandjelovic, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. pp. 2911–2918 (2012). https://doi.org/10.1109/CVPR.2012.6248018

  32. Ahmed, A., Malebary, S.J.: Query expansion based on top-ranked images for content-based medical image retrieval. IEEE Access. 8, 194541–194550 (2020). https://doi.org/10.1109/ACCESS.2020.3033504

    Article  Google Scholar 

  33. Ye, F., Dong, M., Luo, W., Chen, X., Min, W.: A new re-ranking method based on convolutional neural network and two image-to-class distances for remote sensing image retrieval. IEEE Access. 7, 141498–141507 (2019). https://doi.org/10.1109/ACCESS.2019.2944253

    Article  Google Scholar 

  34. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of International Conference on Learning Representations. pp. 1–14 (2015)

  35. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  36. Lao, G., Liu, S., Tan, C., Wang, Y., Li, G., Xu, L., Feng, L., Wang, F.: Three degree binary graph and shortest edge clustering for re-ranking in multi-feature image retrieval. J. Vis. Commun. Image Represent.Commun. Image Represent. 80, 103282 (2021). https://doi.org/10.1016/J.JVCIR.2021.103282

    Article  Google Scholar 

  37. Krotov, D., Hopfield, J.J.: Dense associative memory for pattern recognition. In: Proceedings of International Conference on Neural Information Processing Systems. pp. 1180–1188 (2016)

  38. Krotov, D., Hopfield, J.J.: Large associative memory problem in neurobiology and machine learning. In: Proceedings of International Conference on Learning Representations. pp. 1–13 (2020)

  39. Ramsauer, H., Schäfl, B., Lehner, J., Seidl, P., Widrich, M., Adler, T., Gruber, L., Holzleitner, M., Pavlović, M., Sandve, G.K., Greiff, V., Kreil, D., Kopp, M., Klambauer, G., Brandstetter, J., Hochreiter, S.: Hopfield networks is all you need. In: arXiv preprint:2008.02217 (2020)

  40. Sabahi, F., Ahmad, M.O., Swamy, M.N.S.: Hopfield network-based image retrieval using re-ranking and voting. In: Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering. pp. 1–4 (2017). https://doi.org/10.1109/CCECE.2017.7946798

  41. Sabahi, F., Ahmad, M.O., Swamy, M.N.S.: Content-based image retrieval using perceptual image hashing and hopfield neural network. In: Proceedings of IEEE International Midwest Symposium on Circuits and Systems. pp. 352–355 (2018). https://doi.org/10.1109/MWSCAS.2018.8623902

  42. Wu, C., Zhu, J., Cai, D., Chen, C., Bu, J.: Semi-Supervised nonlinear hashing using bootstrap sequential projection learning. IEEE Trans. Knowl. Data Eng.Knowl. Data Eng. 25, 1380–1393 (2013). https://doi.org/10.1109/TKDE.2012.76

    Article  Google Scholar 

  43. Pronobis, W., Panknin, D., Kirschnick, J., Srinivasan, V., Samek, W., Markl, V., Kaul, M., Müller, K.-R., Nakajima, S.: Sharing hash codes for multiple purposes. In: arXiv preprint:1609.03219 (2017)

  44. Zhang, X., Wang, M., Cui, J.: Efficient indexing of binary LSH for high dimensional nearest neighbor. Neurocomputing 213, 24–33 (2016). https://doi.org/10.1016/J.NEUCOM.2016.05.095

    Article  Google Scholar 

  45. Xu, D., Wu, J., Li, D., Tian, Y., Zhu, X., Wu, X.: SALE: self-adaptive LSH encoding for multi-instance learning. Pattern Recognit. 71, 460–482 (2017). https://doi.org/10.1016/J.PATCOG.2017.04.029

    Article  Google Scholar 

  46. Li, L., Yan, C.C., Ji, W., Chen, B.W., Jiang, S., Huang, Q.: LSH-based semantic dictionary learning for large scale image understanding. J. Vis. Commun. Image Represent.Commun. Image Represent. 31, 231–236 (2015). https://doi.org/10.1016/J.JVCIR.2015.06.008

    Article  Google Scholar 

  47. Karsh, R.K., Saikia, A., Laskar, R.H.: Image authentication based on robust image hashing with geometric correction. Multimed. Tools Appl. 77, 25409–25429 (2018). https://doi.org/10.1007/s11042-018-5799-6

    Article  Google Scholar 

  48. Liu, S., Huang, Z.: Efficient image hashing with geometric invariant vector distance for copy detection. ACM Trans. Multimed. Comput. Commun. Appl.Multimed. Comput. Commun. Appl. 15, 1–22 (2019). https://doi.org/10.1145/3355394

    Article  Google Scholar 

  49. Roy, M., Thounaojam, D.M., Pal, S.: A perceptual hash based blind-watermarking scheme for image authentication. Expert Syst. Appl. 227, 120237 (2023). https://doi.org/10.1016/J.ESWA.2023.120237

    Article  Google Scholar 

  50. Rosen, K.H.: Handbook of Graph Theory. Chapman and Hall/CRC (2013). https://doi.org/10.1201/B16132

    Book  Google Scholar 

  51. Samet, H.: Hanan: the quadtree and related hierarchical data structures. ACM Comput. Surv.Comput. Surv. 16, 187–260 (1984). https://doi.org/10.1145/356924.356930

    Article  Google Scholar 

  52. Govindaraj, P., Sandeep, R.: Ring partition and dwt based perceptual image hashing with application to indexing and retrieval of near-identical images. In: Proceedings of IEEE International Conference on Advances in Computing and Communication. pp. 421–425 (2016). https://doi.org/10.1109/ICACC.2015.90

  53. Krizhevsky, A., Nair, V., Hinton, G.: CIFAR-10 and CIFAR-100 datasets. https://www.cs.toronto.edu/~kriz/cifar.html. Accessed 11 June 2022

  54. Zhang, P., Zhang, W., Li, W.-J., Guo, M.: Supervised hashing with latent factor models. In: Proceedings of ACM International Conference on Research and Development in Information Retrieval. pp. 173–182 (2014). https://doi.org/10.1145/2600428.2609600

  55. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Proceedings of European Conference on Computer Vision. pp. 740–755 (2014). https://doi.org/10.1007/978-3-319-10602-1_48

  56. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis.Comput. Vis. 115, 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  57. Thomee, B., Elizalde, B., Shamma, D.A., Ni, K., Friedland, G., Poland, D., Borth, D., Li, A.L.J.: YFCC100M: the new data in multimedia research. Communications 59, 64–73 (2016). https://doi.org/10.1145/2812802

    Article  Google Scholar 

  58. Eghbali, S., Tahvildari, L.: Deep spherical quantization for image search. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11682–11691 (2019). https://doi.org/10.1109/CVPR.2019.01196

  59. Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplication. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms. pp. 522–539 (2021). https://doi.org/10.1137/1.9781611976465.32

  60. Ieng, S.-H., Lehtonen, E., Benosman, R.: Complexity analysis of iterative basis transformations applied to event-based signals. Front. Neurosci.Neurosci. 12, 373–385 (2018). https://doi.org/10.3389/fnins.2018.00373

    Article  Google Scholar 

  61. Wang, L., Qian, X., Zhang, X., Hou, X.: Sketch-based image retrieval with multi-clustering re-ranking. IEEE Trans. Circuits Syst. Video Technol. 30, 4929–4943 (2020). https://doi.org/10.1109/TCSVT.2019.2959875

    Article  Google Scholar 

  62. Zhu, H.: Massive-scale image retrieval based on deep visual feature representation. J. Vis. Commun. Image Represent.Commun. Image Represent. 70, 102738 (2020). https://doi.org/10.1016/j.jvcir.2019.102738

    Article  Google Scholar 

  63. Gkelios, S., Sophokleous, A., Plakias, S., Boutalis, Y., Chatzichristofis, S.A.: Deep convolutional features for image retrieval. Expert Syst. Appl. 177, 114940 (2021). https://doi.org/10.1016/j.eswa.2021.114940

    Article  Google Scholar 

  64. Ahmed, K.T.K.T., Jaffar, S., Hussain, M.G., Fareed, S., Mehmood, A., Choi, G.S.: Maximum response deep learning using markov, retinal & primitive patch binding with googlenet & VGG-19 for large image retrieval. IEEE Access. 9, 41934–41957 (2021)

    Article  Google Scholar 

  65. Lu, F., Liu, G.H.: Image retrieval using contrastive weight aggregation histograms. Digit. Signal Process. 123, 103457 (2022). https://doi.org/10.1016/J.DSP.2022.103457

    Article  Google Scholar 

  66. Ban, C.G., Hwang, Y., Park, D., Lee, R., Jang, R.Y., Choi, M.S.: Multi-subject image retrieval by fusing object and scene-level feature embeddings. Appl. Sci. 12, 12705 (2022). https://doi.org/10.3390/APP122412705

    Article  Google Scholar 

  67. Huang, L., Bai, C., Lu, Y., Zhang, S., Chen, S.: Unsupervised adversarial image retrieval. Multimed. Syst. 28, 673–685 (2022). https://doi.org/10.1007/S00530-021-00866-7

    Article  Google Scholar 

  68. Radenovic, F., Tolias, G., Chum, O.: Fine-tuning CNN image retrieval with no human annotation. IEEE Trans. Pattern Anal. Mach. Intell.Intell. 41, 1655–1668 (2019)

    Article  Google Scholar 

  69. Monowar, M.M., Hamid, M.A., Ohi, A.Q., Alassafi, M.O., Mridha, M.F.: AutoRet: a self-supervised spatial recurrent network for content-based image retrieval. Sensors. 22, 2188 (2022). https://doi.org/10.3390/S22062188

    Article  Google Scholar 

  70. Mo, D., Wong, W.K., Liu, X., Ge, Y.: Concentrated hashing with neighborhood embedding for image retrieval and classification. Int. J. Mach. Learn. Cybern.Cybern. 13, 1571–1587 (2022). https://doi.org/10.1007/S13042-021-01466-7

    Article  Google Scholar 

  71. Mohsan, H., Khan, W.U., Do, D.-T., Chen, X., Li, Y., Chen, C.: An online hashing algorithm for image retrieval based on optical-sensor network. Sensors 23, 2593 (2023). https://doi.org/10.3390/S23052576

    Article  Google Scholar 

  72. Zheng, C., Li, F., Zhu, L., Zhang, Z., Lu, W.: One for more: structured multi-modal hashing for multiple multimedia retrieval tasks. Expert Syst. Appl. (2023). https://doi.org/10.1016/J.ESWA.2023.120913

    Article  Google Scholar 

  73. Minh, P.V.T., Viet, N.D.D., Son, N.T., Anh, B.N., Jaafar, J.: RelaHash: deep hashing with relative position. IEEE Access. 11, 30094–30108 (2023). https://doi.org/10.1109/ACCESS.2023.3259104

    Article  Google Scholar 

  74. Xu, J., Wang, C., Qi, C., Shi, C., Xiao, B.: Unsupervised semantic-based aggregation of deep convolutional features. IEEE Trans. Image Process. 28, 601–611 (2019). https://doi.org/10.1109/TIP.2018.2867104

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada and in part by the Regroupment Strategique en Microelectronique du Quebec, Canada.

Funding

This article is funded by Natural Sciences and Engineering Research Council of Canada, Regroupment Strategique en Microelectronique du Quebec.

Author information

Authors and Affiliations

Authors

Contributions

Farzad Sabahi: conceptualization, methodology, software, writing—original draft, writing—review and editing. M. Omair Ahmad: conceptualization, methodology, writing—original draft, writing—review and editing, supervision, funding acquisition. M.N.S. Swamy: conceptualization, methodology, writing—review and editing, supervision, funding acquisition.

Corresponding author

Correspondence to M. Omair Ahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by F. Wu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

See Eqs. 1825 here.

Proposition 1:

Given \(M\ge K>0\), the limit of the ration of \({\varphi }_{2}\) and \({\varphi }_{1}\) as \(M\) approaches infinity converges to zero, where \({\varphi }_{1}\in \mathcal{O}(M)\) and \({\varphi }_{2}\in \mathcal{O}\left({\text{log}}K\right).\)

Proof

Let \({\varphi }_{1}={C}_{1}M\) and \({\varphi }_{2}={C}_{2}log K\), where \({C}_{1}\) and \({C}_{2}\) are positive constants representing the rate of growth of each function. Through analysis of the limit of the ratio of \({\varphi }_{1}\) and \({\varphi }_{2}\) as \(M\) approaches infinity, we have

$$\underset{M\to \infty }{{\text{lim}}}\frac{{\varphi }_{2}}{{\varphi }_{1}} = \underset{M\to \infty }{{\text{lim}}}\frac{{C}_{2} {\text{log}}K}{{C}_{1}M}$$
(18)

Since \({\text{log}}K\) grows slower than \(M\), as \(M\) approaches infinity, the limit converges to zero:

$$\underset{M\to \infty }{{\text{lim}}}\frac{{C}_{2} {\text{log}}K}{{C}_{1}M}=0$$
(19)

\(\therefore \) Asymptotically, the growth of \({\varphi }_{2}\) is negligible compared to the growth of \({\varphi }_{1}\). □

Proposition 2:

Time complexity of \(\mathcal{O}\left(M\right)+\mathcal{O}\left({\text{log}}K\right)\) is \(\mathcal{O}\left(M\right)\) for \(M\ge K>0\).

Proof

Let function \(\varphi \) be the sum of two other functions, \({\varphi }_{1}\) and \({\varphi }_{2}\), such that \(\varphi ={\varphi }_{1}+{\varphi }_{2}\), where \({\varphi }_{1}\in \mathcal{O}\left(M\right)\) and \({\varphi }_{2}\in \mathcal{O}\left({\text{log}}K\right)\). Then we can express the upper bound of \({\varphi }_{1}\) and \({\varphi }_{2}\) as

$$ \begin{gathered} \exists C_{1} > 0,\exists N_{1} \in \mathbb{N},~\forall n > N_{1} ,\varphi _{1} \le C_{1} M \hfill \\ \exists C_{2} > 0,\exists N_{2} \in \mathbb{N},~\forall n > N_{2} ,\varphi _{2} \le C_{2} \log K. \hfill \\ \end{gathered} $$
(20)

We have \(\varphi \) as

$$\varphi ={\varphi }_{1}+{\varphi }_{2}.$$
(21)

Then by applying the upper bounds for \({\varphi }_{1}\) and \({\varphi }_{2}\) from Eq. 20, we can derive an upper bound for \(\varphi \) as

$$\varphi ={\varphi }_{1}+{\varphi }_{2}\le {C}_{1}M+{C}_{2}{\text{log}}K$$
(22)

or,

$$\varphi \le M\left({C}_{1}+{C}_{2}\frac{{\text{log}}K}{M}\right).$$
(23)

Now, based on Proposition 1, as \(M\) grows large, the term \({C}_{ 2}\) becomes negligible compared to \({C}_{1}M\). Therefore, the dominant term here is \({C}_{1}M\), leading us to express the upper bound of φ as

$${C}_{1}+{C}_{2}\frac{{\text{log}}K}{M}{\le C}_{1}$$
(24)

or

$$\varphi \le {C}_{1}M.$$
(25)

So, the time complexity \(\mathcal{O}(M)+\mathcal{O}(log K)\) is dominated by \(\mathcal{O}({\text{M}})\), which leads us to conclude that the overall time complexity is \(\mathcal{O}({\text{M}})\). □

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabahi, F., Ahmad, M.O. & Swamy, M. RefinerHash: a new hashing-based re-ranking technique for image retrieval. Multimedia Systems 30, 119 (2024). https://doi.org/10.1007/s00530-024-01296-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00530-024-01296-x

Keywords

Navigation